- 2021-06-11 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习北师大版命题、充分条件与必要条件(理)教案
第二节 命题、充分条件与必要条件 [考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义. 1.命题的概念 可以判断真假、用文字或符号表述的语句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题. 2.四种命题及其相互关系 (1)四种命题之间的关系 图121 (2)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同的真假性; ②两个命题互为逆命题或否命题,它们的真假性没有关系. 3.充分条件、必要条件与充要条件的概念 若p⇒q,则p是q的充分条件,q是p的必要条件 p⇒q且qp p是q的充分不必要条件 pq且q⇒p p是q的必要不充分条件 p⇔q p是q的充要条件 pq且qp p是q的既不充分也不必要条件 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)“x2+2x-3<0”是命题.( ) (2)命题“若p,则q”的否命题是“若p,则﹁q”.( ) (3)当q是p的必要条件时,p是q的充分条件.( ) (4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论. (3)正确.q是p的必要条件说明p⇒q,所以p是q的充分条件. (4)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ 2.(教材改编)命题“若α=,则tan α=1”的逆否命题是( ) A.若α≠,则tan α≠1 B.若α=,则tan α≠1 C.若tan α≠1,则α≠ D.若tan α≠1,则α= C [“若p,则q”的逆否命题是“若﹁q,则 ﹁p”,显然﹁q:tan α≠1,﹁p:α≠,所以该命题的逆否命题是“若tan α≠1,则α≠”.] 3.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 A [a=3时,A={1,3},显然A⊆B. 但A⊆B时,a=2或3. ∴“a=3”是“A⊆B”的充分不必要条件.] 4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为( ) 【导学号:57962007】 A.1 B.2 C.3 D.4 B [原命题正确,从而其逆否命题也正确;其逆命题为“若a>-6,则a>-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个假命题.] 5.(2016·天津高考)设x>0,y∈R,则“x>y”是“x>|y|”的( ) A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 C [当x=1,y=-2时,x>y,但x>|y|不成立; 若x>|y|,因为|y|≥y,所以x>y. 所以x>y是x>|y|的必要而不充分条件.] 四种命题的关系及其真假判断 (1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为( ) A.“若x=4,则x2-3x-4=0”为真命题 B.“若x≠4,则x2-3x-4≠0”为真命题 C.“若x≠4,则x2-3x-4≠0”为假命题 D.“若x=4,则x2-3x-4=0”为假命题 (2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) 【导学号:57962008】 A.真,假,真 B.假,假,真 C.真,真,假 D.假,假,假 (1)C (2)B [(1)根据逆否命题的定义可以排除A,D,由x2-3x-4=0,得x=4或-1,所以原命题为假命题,所以其逆否命题也是假命题. (2)由共轭复数的性质,原命题为真命题,因此其逆否命题也为真命题. 当z1=1+2i,z2=2+i时,显然|z1|=|z2|,但z1与z2不共轭,所以逆命题为假命题,从而它的否命题亦为假命题.] [规律方法] 1.已知原命题写出该命题的其他命题时,先要分清命题的条件与结论.特别注意的是,如果命题不是“若p,则q”形式的命题,需先改写为“若p,则q”的形式. 2.给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可. 3.由于原命题与其逆否命题的真假性相同,所以有时可以利用这种等价性间接地证明命题的真假. [变式训练1] 原命题为“若<an,n∈N*,则{an}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( ) A.真,真,真 B.假,假,真 C.真,真,假 D.假,假,假 A [由<an,得an+an+1<2an,即an+1<an. 所以当<an时,必有an+1<an, 则{an}是递减数列. 反之,若{an}是递减数列,必有an+1<an, 从而有<an. 所以原命题及其逆命题均为真命题,从而其否命题及其逆否命题也均是真命题.] 充分条件与必要条件的判断 (1)(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( ) A.p是q的充分必要条件 B.p是q的充分条件,但不是q的必要条件 C.p是q的必要条件,但不是q的充分条件 D.p既不是q的充分条件,也不是q的必要条件 (2)设x∈R,则“|x-2|<1”是“x2+x-2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 (1)C (2)A [(1)当f′(x0)=0时,x=x0不一定是f(x)的极值点, 比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点. 由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0. 综上知,p是q的必要条件,但不是充分条件. (2)|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2. 由于{x|1<x<3}是{x|x>1或x<-2}的真子集. 所以“|x-2|<1”是“x2+x-2>0”的充分不必要条件.] [规律方法] 充分条件、必要条件的三种判断方法 (1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题. (2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题. (3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题. [变式训练2] (2016·武汉模拟)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 B [若a=1,则集合N={1},此时满足N⊆M.若N⊆M,则a2=1或2,所以a=±1或a=±.故“a=1”是“N⊆M”的充分不必要条件.] 充分条件、必要条件的应用 已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围. [解] 由x2-8x-20≤0得 -2≤x≤10, ∴P={x|-2≤x≤10}. 3分 ∵x∈P是x∈S的必要条件, 则S⊆P, ∴∴0≤m≤3. 8分 综上,可知0≤m≤3时,x∈P是x∈S的必要条件. 12分 [迁移探究1] 本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件. [解] 由例题知P={x|-2≤x≤10}. 2分 若x∈P是x∈S的充要条件,则P=S, ∴ 8分 ∴ 这样的m不存在. 12分 [迁移探究2] 本例条件不变,若﹁P是﹁S的必要不充分条件,求实数m的取值范围. [解] 由例题知P={x|-2≤x≤10}. ∵﹁P是﹁S的必要不充分条件,∴P是S的充分不必要条件, ∴P⇒S且SP, 4分 ∴[-2,10][1-m,1+m], ∴或 8分 ∴m≥9,即m的取值范围是[9,+∞). 12分 [规律方法] 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解. (2)要注意区间端点值的检验. [变式训练3] (1)(2017·长沙模拟)已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________. 【导学号:57962009】 (2)方程ax2+2x+1=0(a∈R,a为常数)的解集只有一个负实根的充要条件是________. (1)(0,3) (2)a≤0或a=1 [(1)令M={x|a≤x≤a+1},N={x|x2-4x<0}={x|0查看更多
相关文章
- 当前文档收益归属上传用户