- 2021-06-01 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
河南省示范性高中罗山高中2020学年高中物理 16碰撞
教案部分 16.4 碰 撞 【教学目标】 (一)知识与技能 1.认识弹性碰撞与非弹性碰撞,认识对心碰撞与非对心碰撞 2.了解微粒的散射 (二)过程与方法 通过体会碰撞中动量守恒、机械能守恒与否,体会动量守恒定律、机械能守恒定律的应用。 (三)情感、态度与价值观 感受不同碰撞的区别,培养学生勇于探索的精神。 【教学重点】用动量守恒定律、机械能守恒定律讨论碰撞问题 【教学难点】对各种碰撞问题的理解 【教学方法】教师启发、引导,学生讨论、交流。 【教学用具】投影片,多媒体辅助教学设备 【课时安排】1 课时 【教学过程】 (一)引入新课 碰撞过程是物体之间相互作用时间非常短暂的一种特殊过程,因而碰撞具有如下特点: 1.碰撞过程中动量守恒. 提问:守恒的原因是什么?(因相互作用时间短暂,因此一般满足F内>>F外的条件) 2.碰撞过程中,物体没有宏观的位移,但每个物体的速度可在短暂的时间内发生改变. 3.碰撞过程中,系统的总动能只能不变或减少,不可能增加. 提问:碰撞中,总动能减少最多的情况是什么?(在发生完全非弹性碰撞时总动能减少最多) 熟练掌握碰撞的特点,并解决实际的物理问题,是学习动量守恒定律的基本要求. (二)进行新课 一、弹性碰撞和非弹性碰撞 1.弹性碰撞 在弹性力作用下,碰撞过程只产生机械能的转移,系统内无机械能的损失的碰撞,称为弹性碰撞。 举例:通常情况下的钢球、玻璃球等坚硬物体之间的碰撞及分子、原子等之间的碰撞皆可视为弹性碰撞。 分析:物体m1以速度v1与原来静止的物体m2碰撞,若碰撞后他们的速度分别为v1/ 、 v2/。试根据动量守恒定律和能量守恒定律推导出v1/ 、 v2/的表达式。 注意:弹性碰撞后的物体不发生永久性的形变,不裂成碎片,不粘在一起,不发生热传递及其他变化。 【例1】 质量m1=10g的小球在光得的水平面上以v1=30cm/s的速度向右运动,恰遇上质量m2=50 g的小球以v2=10cm/s的速度向左运动。碰撞后,小球m2恰好静止。那么碰撞后小球m1的速度多大?方向如何? [解析] 设v1的方向为正方向(向右),则各球的速度为v1=30cm/s,v2= —10cm/s,v2/=0, 据m1v1+m2v2=m1v1 /+m2v2 / 解得v1 /= —20cm/s,负号表示碰撞后m1的运动方向 与v1的方向相反,即向左。 [答案] 20cm/s 方向向左 [点评] 本题中的速度方向虽在同一直线上,但有的向右,有的向左,运用动量守恒定律求解时,一定要规定正方向。 2.非弹性碰撞 (1)非弹性碰撞:受非弹性力作用,使部分机械能转化为内能的碰撞称为非弹性碰撞。 (2)完全非弹性碰撞:是非弹性磁撞的特例,这种碰撞的特点是碰后粘在— 起(或碰后具有共同的速度),其动能损失最大。(试试如何推导?) 注意:碰撞后发生永久性形变、粘在一起、摩擦生热等的碰撞往往为非弹性碰撞。 【例2】如图所示,P物体与一个连着弹簧的Q物体正碰,碰撞后P物体静止,Q物体以P物体碰撞前速度v离开,已知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被压缩至最短时,下列的结论中正确的应是 ( ) A.P的速度恰好为零 B.P与Q具有相同速度 C.Q刚开始运动 D.Q的速度等于v [解析] P物体接触弹簧后,在弹簧弹力的作用下,P做减速 运动,Q物体做加速运动,P、Q间的距离减小,当P、Q两物体 速度相等时,弹簧被压缩到最短,所以B正确,A、C错误。由 于作用过程中动量守恒,设速度相等时速度为v/,则mv=(m+m) v/,所以弹簧被压缩至最短时,P、Q的速度v/=v/2,故D错误。 [答案] B [点评] 用弹簧连着的物体间相互作用时,可类似于弹性碰撞,此类题目常见的有相互作用的物体中出现恰好“最近”“最远”等临界问题,求解的关键点是速度相等 【例3】如图所示,质量为M的重锤自h高度由静止开始下落,砸到质量为m的木楔上没有弹起,二者一起向下运动.设地层给它们的平均阻力为F,则木楔可进入的深度L是多少? 组织学生认真读题,并给三分钟时间思考. (1)提问学生解题方法,可能出现的错误是:认为过程中只有地层阻力F做负功使机械能损失,因而解之为 Mg(h+L)+mgL-FL=0. 将此结论写在黑板上,然后再组织学生分析物理过程. (2)引导学生回答并归纳:第一阶段,M做自由落体运动机械能守恒.m不动,直到M开始接触m为止.再下面一个阶段,M与m以共同速度开始向地层内运动.阻力F做负功,系统机械能损失. 提问:第一阶段结束时,M有速度,,而m速度为零。下一阶段开始时,M与m就具有共同速度,即m的速度不为零了,这种变化是如何实现的呢? 引导学生分析出来,在上述前后两个阶段中间,还有一个短暂的阶段,在这个阶段中,内力远大于外力,M和m发生了完全非弹性碰撞,这个阶段中,机械能(动能)是有损失的. (3)让学生独立地写出完整的方程组. 第一阶段,对重锤有: 第二阶段,对重锤及木楔有 Mv+0=(M+m). 第三阶段,对重锤及木楔有 (4)小结:在这类问题中,没有出现碰撞两个字,碰撞过程是隐含在整个物理过程之中的,在做题中,要认真分析物理过程,发掘隐含的碰撞问题. 【例4】在光滑水平面上,有A、B两个小球向右沿同一直线运动,取向右为正,两球的动量分别是pA=5kgm/s,pB=7kgm/s,如图所示.若能发生正碰,则碰后两球的动量增量△pA、△pB可能是 ( ) A.△pA=-3kgm/s;△pB =3kgm/s B.△pA=3kgm/s;△pB =3kgm/s C.△pA=-10kgm/s;△pB =10kgm/s D.△pA=3kgm/s;△pB =-3kgm/s 组织学生认真审题. (1)提问:解决此类问题的依据是什么? 在学生回答的基础上总结归纳为: ①系统动量守恒;②系统的总动能不能增加;③系统总能量的减少量不能大于发生完全非弹性碰撞时的能量减少量;④ 碰撞中每个物体动量的增量方向一定与受力方向相同;⑤如碰撞后向同方向运动,则后面物体的速度不能大于前面物体的速度. (2)提问:题目仅给出两球的动量,如何比较碰撞过程中的能量变化? 帮助学生回忆的关系。 (3)提问:题目没有直接给出两球的质量关系,如何找到质量关系? 要求学生认真读题,挖掘隐含的质量关系,即A追上B并相碰撞, 所以,,即 , (4)最后得到正确答案为A. 二、对心碰撞和非对心碰撞 1.对心碰撞 两球碰撞时,碰撞之前球的运动速度与两球心的连线在同—条直线上,碰撞之后两球的速度仍沿着这条直线,这种碰撞称为对心碰撞,也叫正碰。 注意:发生对心碰撞的两个物体,碰撞前后的速度都沿同一条直线,它们的动量也都沿这条直线,在这个方向上动量守恒。 2.非对心碰撞 两球碰撞时,碰撞之前的运动速度与两球心的连线不在同—条直线上,碰撞之后两球的速度都会偏离原来两球心的连线。这种碰撞称为非对心碰撞,也叫斜碰。斜碰也遵循动量守恒定律,但情况较复杂,中学阶段不作要求。 注意:发生非对心碰撞的两个小球,可以将小球速度沿球心连线和垂直球心连线两个方向分解,在这两个方向上应用动量守恒定律列式求解。 三、散射 1、散射:在粒产物理和核物理中,常常使一束粒子射人物体,粒子与物体中的微粒碰撞。这些微观粒子相互接近时并不发生直接接触,这种微观粒子的碰撞叫做散射。 由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子在磁撞后飞向四面八方。 2、如何正确理解非对心碰撞与散射? 诠释 (1)非对心碰撞的两个物体,碰撞前后速度不在同一条直线上,属于二维碰撞问题.如果系统碰撞过程中所受合外力为零,则仍然满足动量守恒,这时通常将动量守恒用分量式表示.如: m1v1x+m2v2x=m1v1x /+m2v2x /, m1v1y+m2v2y=m1v1y /+m2v2y /, (2)在用α粒子轰击金箔时,α粒子与金原子核碰撞(并不直接接触)后向各个方向飞出,即发生散射.其散射角θ满足以下关系式 cotθ/2=4πε0Mv2b/2Ze2. 其中Z为金原子的原子序数,M是α粒子的质量,εo为真空中的介电常数,其他物理量见图所示.从上式可以看出,b越小,θ越大.当b=o时,θ=1800,α粒子好像被弹回来一样. 微观粒子之间的碰撞通常被视为完全弹性碰撞,遵从动量守恒及前后动能相等.英国物理学家查德威克利用弹性碰撞理论成功地发现了中子. (三)课堂小结 教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。 学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。 点评:总结课堂内容,培养学生概括总结能力。 教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。 (四)作业 “问题与练习”1~5题 ★教学体会 思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。 学案部分 16.4 碰 撞 【目标引领】 (一)知识与技能 1.认识弹性碰撞与非弹性碰撞,认识对心碰撞与非对心碰撞 2.了解微粒的散射 (二)过程与方法 通过体会碰撞中动量守恒、机械能守恒与否,体会动量守恒定律、机械能守恒定律的应用。 (三)情感、态度与价值观 感受不同碰撞的区别,培养学生勇于探索的精神。 【自学探究】 1.碰撞过程中动量守恒吗?为什么? 2、什么是弹性碰撞和非弹性碰撞? 3、什么是对心碰撞和非对心碰撞? 4、什么是散射? 【合作解疑】 1、碰撞过程中位移、速度的改变有何特点?系统的总动能如何变化? 2.在弹性碰撞和非弹性碰撞碰撞过程中,系统的动量和机械能各有何特点? 3、哪一种碰撞系统动能损失最大?这种碰撞有何特点? 【精讲点拨】 【例1】 质量m1=10g的小球在光得的水平面上以v1=30cm/s的速度向右运动,恰遇上质量m2=50 g的小球以v2=10cm/s的速度向左运动。碰撞后,小球m2恰好静止。那么碰撞后小球m1的速度多大?方向如何? 解题反思: 【例2】如图所示,P物体与一个连着弹簧的Q物体正碰,碰撞后P物体静止,Q物体以P物体碰撞前速度v离开,已知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被压缩至最短时,下列的结论中正确的应是 ( ) A.P的速度恰好为零 B.P与Q具有相同速度 C.Q刚开始运动 D.Q的速度等于v 解题反思: 【例3】如图所示,质量为M的重锤自h高度由静止开始下落,砸到质量为m的木楔上没有弹起,二者一起向下运动.设地层给它们的平均阻力为F,则木楔可进入的深度L是多少? 解题反思: 【例4】在光滑水平面上,有A、B两个小球向右沿同一直线运动,取向右为正,两球的动量分别是pA=5kgm/s,pB=7kgm/s,如图所示.若能发生正碰,则碰后两球的动量增量△pA、△pB可能是 ( ) A.△pA=-3kgm/s;△pB =3kgm/s B.△pA=3kgm/s;△pB =3kgm/s C.△pA=-10kgm/s;△pB =10kgm/s D.△pA=3kgm/s;△pB =-3kgm/s 问题思考: 1、解决此类问题的依据是什么? 2、题目仅给出两球的动量,如何比较碰撞过程中的能量变化? 3、题目没有直接给出两球的质量关系,如何找到质量关系? 解题反思: 【训练巩固】 1.如图所示,质量为M的小车原来静止在光滑水平面上,小车A端固定一根轻弹簧,弹簧的另一端放置一质量为m的物体C,小车底部光滑,开始让弹簧处于压缩状态,当弹簧释放后,物体C被弹出向小车B端运动,最后与B端粘在一起,下列说法中正确的是 ( ) A.物体离开弹簧时,小车向左运动 B.物体与B端粘在一起之前,小车的运动速率与物体C的运动速率之比为m/M C.物体与B端粘在一起后,小车静止下来 D.物体与B端粘在一起后,小车向右运动 2.三个相同的木块A、B、C从同一高度处自由下落,其中木块A刚开始下落的瞬间被水平飞来的子弹击中,木块B在下落到一定高度时,才被水平飞来的子弹击中。若子弹均留在木块中,则三木块下落的时间tA、tB、tc的关系是 ( ) A.tA< tB查看更多
相关文章
- 当前文档收益归属上传用户