- 2021-05-14 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学江苏省理科试题及答案解析
2016年江苏省高考数学试卷 一、填空题(共14小题,每小题5分,满分70分) 【2016江苏(理)】已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B= . 【答案】{﹣1,2} 【解析】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3}, ∴A∩B={﹣1,2}, 【2016江苏(理)】复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是 . 【答案】5 【解析】解:z=(1+2i)(3﹣i)=5+5i, 则z的实部是5, 【2016江苏(理)】在平面直角坐标系xOy中,双曲线﹣=1的焦距是 . 【答案】 2 【解析】解:双曲线﹣=1中,a=,b=, ∴c==, ∴双曲线﹣=1的焦距是2. 【2016江苏(理)】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1 【解析】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为: =(4.7+4.8+5.1+5.4+5.5)=5.1, ∴该组数据的方差: S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1. 【2016江苏(理)】函数y=的定义域是 . 【答案】[﹣3,1] 【解析】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0, 解得:x∈[﹣3,1], 【2016江苏(理)】如图是一个算法的流程图,则输出的a的值是 . 【答案】9 【解析】解:当a=1,b=9时,不满足a>b,故a=5,b=7, 当a=5,b=7时,不满足a>b,故a=9,b=5 当a=9,b=5时,满足a>b, 故输出的a值为9, 【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】 【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次, 基本事件总数为n=6×6=36, 出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10, 出现向上的点数之和不小于10包含的基本事件有: (4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个, ∴出现向上的点数之和小于10的概率: p=1﹣=. 【2016江苏(理)】已知{an}是等差数列,Sn是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是 . 【答案】20 【解析】解:∵{an}是等差数列,Sn是其前n项和,a1+a22=﹣3,S5=10, ∴, 解得a1=﹣4,d=3, ∴a9=﹣4+8×3=20. 【2016江苏(理)】定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是 . 【答案】7 【解析】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下: 由图可知,共7个交点. 【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是 . 【答案】 【解析】解:设右焦点F(c,0), 将y=代入椭圆方程可得x=±a=±a, 可得B(﹣a,),C(a,), 由∠BFC=90°,可得kBF•kCF=﹣1, 即有•=﹣1, 化简为b2=3a2﹣4c2, 由b2=a2﹣c2,即有3c2=2a2, 由e=,可得e2==, 可得e=, 【2016江苏(理)】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是 . 【答案】﹣ 【解析】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=, ∴f(﹣)=f(﹣)=﹣+a, f()=f()=|﹣|=, ∴a=, ∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣, 【2016江苏(理)】已知实数x,y满足,则x2+y2的取值范围是 . 【答案】[,13] 【解析】解:作出不等式组对应的平面区域, 设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方, 由图象知A到原点的距离最大, 点O到直线BC:2x+y﹣2=0的距离最小, 由得,即A(2,3),此时z=22+32=4+9=13, 点O到直线BC:2x+y﹣2=0的距离d==, 则z=d2=()2=, 故z的取值范围是[,13], 故答案为:[,13]. 【2016江苏(理)】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是 . 【答案】 【解析】解:∵D是BC的中点,E,F是AD上的两个三等分点, ∴=+,=﹣+, =+3,=﹣+3, ∴•=2﹣2=﹣1, •=92﹣2=4, ∴2=,2=, 又∵=+2,=﹣+2, ∴•=42﹣2=, 【2016江苏(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 . 【答案】8 【解析】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC, 可得sinBcosC+cosBsinC=2sinBsinC,① 由三角形ABC为锐角三角形,则cosB>0,cosC>0, 在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC, 又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣ ②, 则tanAtanBtanC=﹣•tanBtanC, 由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣, 令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0, 由②式得1﹣tanBtanC<0,解得t>1, tanAtanBtanC=﹣=﹣, =()2﹣,由t>1得,﹣≤<0, 因此tanAtanBtanC的最小值为8, 当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2, 解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角. 二、解答题(共6小题,满分90分) 【2016江苏(理)】在△ABC中,AC=6,cosB=,C=. (1)求AB的长; (2)求cos(A﹣)的值. 【解析】解:(1)∵△ABC中,cosB=, ∴sinB=, ∵, ∴AB==5; (2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣. ∵A为三角形的内角, ∴sinA=, ∴cos(A﹣)=cosA+sinA=. 【2016江苏(理)】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证: (1)直线DE∥平面A1C1F; (2)平面B1DE⊥平面A1C1F. 【解析】解:(1)∵D,E分别为AB,BC的中点, ∴DE为△ABC的中位线, ∴DE∥AC, ∵ABC﹣A1B1C1为棱柱, ∴AC∥A1C1, ∴DE∥A1C1, ∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F, ∴DE∥A1C1F; (2)∵ABC﹣A1B1C1为直棱柱, ∴AA1⊥平面A1B1C1, ∴AA1⊥A1C1, 又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B, ∴A1C1⊥平面AA1B1B, ∵DE∥A1C1, ∴DE⊥平面AA1B1B, 又∵A1F⊂平面AA1B1B, ∴DE⊥A1F, 又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE, ∴A1F⊥平面B1DE, 又∵A1F⊂平面A1C1F, ∴平面B1DE⊥平面A1C1F. 【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍. (1)若AB=6m,PO1=2m,则仓库的容积是多少? (2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大? 【解析】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍. ∴O1O=8m, ∴仓库的容积V=×62×2+62×8=312m3, (2)若正四棱锥的侧棱长为6m, 设PO1=xm, 则O1O=4xm,A1O1=m,A1B1=m, 则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6), ∴V′=﹣26x2+312,(0<x<6), 当0<x<2时,V′>0,V(x)单调递增; 当2<x<6时,V′<0,V(x)单调递减; 故当x=2时,V(x)取最大值; 即当PO1=2m时,仓库的容积最大. 【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4). (1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程; (2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程; (3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围. 【解析】解:(1)∵N在直线x=6上,∴设N(6,n), ∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0, 又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x﹣6)2+(x﹣7)2=25, ∴|7﹣n|=|n|+5,解得n=1, ∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1. (2)由题意得OA=2,kOA=2,设l:y=2x+b, 则圆心M到直线l的距离:d==, 则|BC|=2=2,BC=2,即2=2, 解得b=5或b=﹣15, ∴直线l的方程为:y=2x+5或y=2x﹣15. (3)=,即,即||=||, ||=, 又||≤10,即≤10,解得t∈[2﹣2,2+2], 对于任意t∈[2﹣2,2+2],欲使, 此时,||≤10, 只需要作直线TA的平行线,使圆心到直线的距离为, 必然与圆交于P、Q两点,此时||=||,即, 因此实数t的取值范围为t∈[2﹣2,2+2],. 【2016江苏(理)】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (1)设a=2,b=. ①求方程f(x)=2的根; ②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值; (2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值. 【解析】解:函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (1)设a=2,b=. ①方程f(x)=2;即:=2,可得x=0. ②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立. 令t=,t≥2. 不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或 即:m2﹣16≤0或m≤4, ∴m∈(﹣∞,4]. 实数m的最大值为:4. (2)g(x)=f(x)﹣2=ax+bx﹣2, g′(x)=axlna+bxlnb=ax[+],0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0, 因此x∈(﹣∞,x0)时,h(x)<0,axlnb>0,则g′(x)<0. x∈(x0,+∞)时,h(x)>0,axlnb>0,则g′(x)>0, 则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0). ①若g(x0)<0,x<loga2时,ax>=2,bx>0,则g(x)>0, 因此x1<loga2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点, 则g(x)至少有两个零点,与条件矛盾. ②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0, 由g(0)=a0+b0﹣2=0, 因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1. 可得ab=1. 【2016江苏(理)】记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=∅,定义ST=0;若T={t1,t2,…,tk},定义ST=++…+.例如:T={1,3,66}时,ST=a1+a3+a66.现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30. (1)求数列{an}的通项公式; (2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:ST<ak+1; (3)设C⊆U,D⊆U,SC≥SD,求证:SC+SC∩D≥2SD. 【解析】解:(1)当T={2,4}时,ST=a2+a4=a2+9a2=30, 因此a2=3,从而a1==1, 故an=3n﹣1, (2)ST≤a1+a2+…ak=1+3+32+…+3k﹣1=<3k=ak+1, (3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅, 分析可得SC=SA+SC∩D,SD=SB+SC∩D,则SC+SC∩D﹣2SD=SA﹣2SB, 因此原命题的等价于证明SC≥2SB, 由条件SC≥SD,可得SA≥SB, ①、若B=∅,则SB=0,故SA≥2SB, ②、若B≠∅,由SA≥SB可得A≠∅,设A中最大元素为l,B中最大元素为m, 若m≥l+1,则其与SA<ai+1≤am≤SB相矛盾, 因为A∩B=∅,所以l≠m,则l≥m+1, SB≤a1+a2+…am=1+3+32+…+3m﹣1=<=,即SA≥2SB, 综上所述,SA≥2SB, 故SC+SC∩D≥2SD. 附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】 【2016江苏(理)】如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD. 【解析】解:由BD⊥AC可得∠BDC=90°, 因为E为BC的中点,所以DE=CE=BC, 则:∠EDC=∠C, 由∠BDC=90°,可得∠C+∠DBC=90°, 由∠ABC=90°,可得∠ABD+∠DBC=90°, 因此∠ABD=∠C,而∠EDC=∠C, 所以,∠EDC=∠ABD. B.【选修4—2:矩阵与变换】 【2016江苏(理)】已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB. 【解析】解:∵B﹣1=, ∴B=(B﹣1)﹣1==,又A=, ∴AB==. C.【选修4—4:坐标系与参数方程】 【2016江苏(理)】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长. 【解析】解:由,由②得, 代入①并整理得,. 由,得, 两式平方相加得. 联立,解得或. ∴|AB|=. 【2016江苏(理)】设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a. 【解析】证明:由a>0,|x﹣1|<,|y﹣2|<, 可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)| ≤2|x﹣1|+|y﹣2|<+=a, 则|2x+y﹣4|<a成立. 附加题【必做题】 【2016江苏(理)】如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0). (1)若直线l过抛物线C的焦点,求抛物线C的方程; (2)已知抛物线C上存在关于直线l对称的相异两点P和Q. ①求证:线段PQ的中点坐标为(2﹣p,﹣p); ②求p的取值范围. 【解析】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0), 即抛物线的焦点坐标(2,0). ∴, ∴抛物线C:y2=8x. (2)证明:①设点P(x1,y1),Q(x2,y2),则:, 即:,kPQ==, 又∵P,Q关于直线l对称,∴kPQ=﹣1,即y1+y2=﹣2p,∴, 又PQ的中点在直线l上,∴==2﹣p, ∴线段PQ的中点坐标为(2﹣p,﹣p); ②因为Q中点坐标(2﹣p,﹣p). ∴,即 ∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根, ∴△>0,(2p)2﹣4(4p2﹣4p)>0, ∴p∈. 【2016江苏(理)】(1)求7C﹣4C的值; (2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C. 【解析】解:(1)7 =﹣4× =7×20﹣4×35=0. 证明:(2)对任意m∈N*, ①当n=m时,左边=(m+1)=m+1, 右边=(m+1)=m+1,等式成立. ②假设n=k(k≥m)时命题成立, 即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1), 当n=k+1时, 左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2) =, 右边= ∵ =(m+1)[﹣] =(m+1)×[k+3﹣(k﹣m+1)] =(k+2) =(k+2), ∴=(m+1), ∴左边=右边, ∴n=k+1时,命题也成立, ∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C. 2016年江苏省高考数学试卷 一、填空题(共14小题,每小题5分,满分70分) 1.【2016江苏(理)】已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B= . 2.【2016江苏(理)】复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是 . 3.【2016江苏(理)】在平面直角坐标系xOy中,双曲线﹣=1的焦距是 . 4.【2016江苏(理)】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 5.【2016江苏(理)】函数y=的定义域是 . 6.【2016江苏(理)】如图是一个算法的流程图,则输出的a的值是 . 7.【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 8.【2016江苏(理)】已知{an}是等差数列,Sn是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是 . 9.【2016江苏(理)】定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是 . 10.【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是 . 11.【2016江苏(理)】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是 . 12.【2016江苏(理)】已知实数x,y满足,则x2+y2的取值范围是 . 13.【2016江苏(理)】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是 . 14.【2016江苏(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 . 二、解答题(共6小题,满分90分) 15.【2016江苏(理)】在△ABC中,AC=6,cosB=,C=. (1)求AB的长; (2)求cos(A﹣)的值. 16.【2016江苏(理)】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证: (1)直线DE∥平面A1C1F; (2)平面B1DE⊥平面A1C1F. 17.【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍. (1)若AB=6m,PO1=2m,则仓库的容积是多少? (2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大? 18.【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4). (1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程; (2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程; (3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围. 19.【2016江苏(理)】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1). (1)设a=2,b=. ①求方程f(x)=2的根; ②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值; (2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值. 20.【2016江苏(理)】记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=∅,定义ST=0;若T={t1,t2,…,tk},定义ST=++…+.例如:T={1,3,66}时,ST=a1+a3+a66.现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30. (1)求数列{an}的通项公式; (2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:ST<ak+1; (3)设C⊆U,D⊆U,SC≥SD,求证:SC+SC∩D≥2SD. 附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】 21.【2016江苏(理)】如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD. B.【选修4—2:矩阵与变换】 22.【2016江苏(理)】已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB. C.【选修4—4:坐标系与参数方程】 23.【2016江苏(理)】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长. 24.【2016江苏(理)】设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a. 附加题【必做题】 25.【2016江苏(理)】如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0). (1)若直线l过抛物线C的焦点,求抛物线C的方程; (2)已知抛物线C上存在关于直线l对称的相异两点P和Q. ①求证:线段PQ的中点坐标为(2﹣p,﹣p); ②求p的取值范围. 26.【2016江苏(理)】(1)求7C﹣4C的值; (2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C. 查看更多