高考试题——数学理辽宁卷解析版
2009年普通高等学校招生全国统一考试(辽宁卷)
数学(理工农医类)
一- 选择题(每小题5分,共60分)
(1)已知集合M={x|-3
0,V=S-T
(B) A<0,V=S-T
(C) A>0, V=S+T w.w.w.k.s.5.u.c.o.m
(D)A<0, V=S+T
【解析】月总收入为S,因此A>0时归入S,判断框内填A>0
支出T为负数,因此月盈利V=S+T
【答案】C
(11)正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为
(A)1:1 (B) 1:2 (C) 2:1 (D) 3:2
【解析】由于G是PB的中点,故P-GAC的体积等于B-GAC的体积
A
B
C
D
E
F
H
在底面正六边形ABCDER中
BH=ABtan30°=AB
而BD=AB
故DH=2BH
于是VD-GAC=2VB-GAC=2VP-GAC
【答案】C
(12)若满足2x+=5, 满足2x+2(x-1)=5, +=
(A) (B)3 (C) (D)4
【解析】由题意 ①
②
所以,
即2
令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1)
∴5-2t=2log2(t-1)与②式比较得t=x2
于是2x1=7-2x2
【答案】C
(13)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为 h.
【解析】=1013
【答案】1013
(14)等差数列的前项和为,且则
【解析】∵Sn=na1+n(n-1)d
∴S5=5a1+10d,S3=3a1+3d
∴6S5-5S3=30a1+60d-(15a1+15d)=15a1+45d=15(a1+3d)=15a4
【答案】
(15)设某几何体的三视图如下(尺寸的长度单位为m)。w.w.w.k.s.5.u.c.o.m
则该几何体的体积为 w.w.w.k.s.5.u.c.o.m
【解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,
体积等于×2×4×3=4
【答案】4
(16)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。
【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F’(4,0),
于是由双曲线性质|PF|-|PF’|=2a=4
而|PA|+|PF’|≥|AF’|=5
两式相加得|PF|+|PA|≥9,当且仅当A、P、F’三点共线时等号成立.
【答案】9
(17)(本小题满分12分)
如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为,,于水面C处测得B点和D点的仰角均为,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km,1.414,2.449)w.w.w.k.s.5.u.c.o.m
(17)解:
在△ABC中,∠DAC=30°, ∠ADC=60°-∠DAC=30,
所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°,
故CB是△CAD底边AD的中垂线,所以BD=BA, ……5分
在△ABC中,
即AB=
因此,BD=
故B,D的距离约为0.33km。 ……12分
(18)(本小题满分12分)
如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点 。
(I)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;
(II)用反证法证明:直线ME 与 BN 是两条异面直线。w.w.w.k.s.5.u.c.o.m
(18)(I)解法一:
取CD的中点G,连接MG,NG。
设正方形ABCD,DCEF的边长为2,
则MG⊥CD,MG=2,NG=.
因为平面ABCD⊥平面DCED,
所以MG⊥平面DCEF,
可得∠MNG是MN与平面DCEF所成的角。因为MN=,所以sin∠MNG=为MN与平面DCEF所成角的正弦值 ……6分
解法二:
设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.
则M(1,0,2),N(0,1,0),可得=(-1,1,2).
又=(0,0,2)为平面DCEF的法向量,
可得cos(,)=·
所以MN与平面DCEF所成角的正弦值为
cos· ……6分
(Ⅱ)假设直线ME与BN共面, ……8分
则AB平面MBEN,且平面MBEN与平面DCEF交于EN
由已知,两正方形不共面,故AB平面DCEF。
又AB//CD,所以AB//平面DCEF。面EN为平面MBEN与平面DCEF的交线,
所以AB//EN。
又AB//CD//EF,
所以EN//EF,这与EN∩EF=E矛盾,故假设不成立。
所以ME与BN不共面,它们是异面直线. ……12分
(19)(本小题满分12分)
某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)w.w.w.k.s.5.u.c.o.m
(19)解:
(Ⅰ)依题意X的分列为
………………6分
(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.
B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.
依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,
,
所求的概率为
………12分
(20)(本小题满分12分)
已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。
(1) 求椭圆C的方程;w.w.w.k.s.5.u.c.o.m
(2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
(20)解:
(Ⅰ)由题意,c=1,可设椭圆方程为,解得,(舍去)
所以椭圆方程为。 ……………4分
(Ⅱ)设直线AE方程为:,代入得
设,,因为点在椭圆上,所以
………8分
又直线AF的斜率与AE的斜率互为相反数,在上式中以—K代K,可得
所以直线EF的斜率
即直线EF的斜率为定值,其值为。 ……12分
(21)(本小题满分12分)
已知函数f(x)=x-ax+(a-1),。
(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m
(2)证明:若,则对任意x,x,xx,有。
(21)解:(1)的定义域为。
2分
(i)若即,则
故在单调增加。
(ii)若,而,故,则当时,;
当及时,
故在单调减少,在单调增加。
(iii)若,即,同理可得在单调减少,在单调增加.
(II)考虑函数
则
由于1
查看更多