高考试题——数学理辽宁卷解析版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考试题——数学理辽宁卷解析版

‎2009年普通高等学校招生全国统一考试(辽宁卷)‎ 数学(理工农医类)‎ 一- 选择题(每小题5分,共60分)‎ ‎(1)已知集合M={x|-30,V=S-T ‎ (B) A<0,V=S-T ‎ (C) A>0, V=S+T w.w.w.k.s.5.u.c.o.m ‎ ‎(D)A<0, V=S+T ‎【解析】月总收入为S,因此A>0时归入S,判断框内填A>0‎ ‎ 支出T为负数,因此月盈利V=S+T ‎【答案】C ‎(11)正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为 ‎(A)1:1 (B) 1:2 (C) 2:1 (D) 3:2‎ ‎【解析】由于G是PB的中点,故P-GAC的体积等于B-GAC的体积 A B C D E F H ‎ 在底面正六边形ABCDER中 ‎ BH=ABtan30°=AB ‎ 而BD=AB ‎ 故DH=2BH ‎ 于是VD-GAC=2VB-GAC=2VP-GAC ‎【答案】C ‎(12)若满足2x+=5, 满足2x+2(x-1)=5, +=‎ ‎(A) (B)3 (C) (D)4‎ ‎【解析】由题意 ①‎ ‎ ②‎ ‎ 所以,‎ ‎ 即2‎ ‎ 令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1)‎ ‎ ∴5-2t=2log2(t-1)与②式比较得t=x2 于是2x1=7-2x2‎ ‎【答案】C ‎(13)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为 h.‎ ‎【解析】=1013‎ ‎【答案】1013‎ ‎(14)等差数列的前项和为,且则 ‎ ‎【解析】∵Sn=na1+n(n-1)d ‎ ∴S5=‎5a1+10d,S3=‎3a1+3d ‎ ∴6S5-5S3=‎30a1+60d-(‎15a1+15d)=‎15a1+45d=15(a1+3d)=‎15a4‎ ‎【答案】‎ ‎(15)设某几何体的三视图如下(尺寸的长度单位为m)。w.w.w.k.s.5.u.c.o.m ‎ ‎ 则该几何体的体积为 w.w.w.k.s.5.u.c.o.m ‎ ‎【解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,‎ ‎ 体积等于×2×4×3=4‎ ‎【答案】4‎ ‎(16)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。‎ ‎【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F’(4,0),‎ ‎ 于是由双曲线性质|PF|-|PF’|=‎2a=4‎ ‎ 而|PA|+|PF’|≥|AF’|=5‎ ‎ 两式相加得|PF|+|PA|≥9,当且仅当A、P、F’三点共线时等号成立.‎ ‎【答案】9‎ ‎(17)(本小题满分12分)‎ 如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为,,于水面C处测得B点和D点的仰角均为,AC=‎0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到‎0.01km,1.414,2.449)w.w.w.k.s.5.u.c.o.m ‎ ‎(17)解:‎ 在△ABC中,∠DAC=30°, ∠ADC=60°-∠DAC=30,‎ 所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°,‎ 故CB是△CAD底边AD的中垂线,所以BD=BA,        ……5分 在△ABC中,‎ 即AB=‎ 因此,BD=‎ 故B,D的距离约为‎0.33km。  ……12分 ‎(18)(本小题满分12分)‎ 如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点 。‎ ‎(I)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;‎ ‎(II)用反证法证明:直线ME 与 BN 是两条异面直线。w.w.w.k.s.5.u.c.o.m ‎ ‎(18)(I)解法一:‎ 取CD的中点G,连接MG,NG。‎ 设正方形ABCD,DCEF的边长为2, ‎ 则MG⊥CD,MG=2,NG=.‎ 因为平面ABCD⊥平面DCED,‎ 所以MG⊥平面DCEF,‎ 可得∠MNG是MN与平面DCEF所成的角。因为MN=,所以sin∠MNG=为MN与平面DCEF所成角的正弦值 ……6分 解法二:‎ ‎ 设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.‎ 则M(1,0,2),N(0,1,0),可得=(-1,1,2). ‎ 又=(0,0,2)为平面DCEF的法向量,‎ 可得cos(,)=· ‎ 所以MN与平面DCEF所成角的正弦值为 cos· ……6分 ‎(Ⅱ)假设直线ME与BN共面, ……8分 则AB平面MBEN,且平面MBEN与平面DCEF交于EN 由已知,两正方形不共面,故AB平面DCEF。‎ 又AB//CD,所以AB//平面DCEF。面EN为平面MBEN与平面DCEF的交线,‎ 所以AB//EN。‎ 又AB//CD//EF,‎ 所以EN//EF,这与EN∩EF=E矛盾,故假设不成立。‎ 所以ME与BN不共面,它们是异面直线. ……12分 ‎(19)(本小题满分12分)‎ 某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。‎ ‎(Ⅰ)设X表示目标被击中的次数,求X的分布列;‎ ‎(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)w.w.w.k.s.5.u.c.o.m ‎ ‎(19)解:‎ ‎(Ⅰ)依题意X的分列为 ‎ ‎ ‎ ………………6分 ‎(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.‎ ‎ B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.‎ 依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,‎ ‎,‎ 所求的概率为 ‎ ‎ ‎ ………12分 ‎(20)(本小题满分12分)‎ 已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。‎ (1) 求椭圆C的方程;w.w.w.k.s.5.u.c.o.m ‎ (2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。‎ ‎(20)解:‎ ‎(Ⅰ)由题意,c=1,可设椭圆方程为,解得,(舍去)‎ 所以椭圆方程为。 ……………4分 ‎(Ⅱ)设直线AE方程为:,代入得 ‎ 设,,因为点在椭圆上,所以 ‎ ‎ ‎ ………8分 又直线AF的斜率与AE的斜率互为相反数,在上式中以—K代K,可得 所以直线EF的斜率 即直线EF的斜率为定值,其值为。 ……12分 ‎(21)(本小题满分12分)‎ 已知函数f(x)=x-ax+(a-1),。‎ ‎(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m ‎ ‎(2)证明:若,则对任意x,x,xx,有。‎ ‎(21)解:(1)的定义域为。‎ ‎2分 ‎(i)若即,则 故在单调增加。‎ ‎(ii)若,而,故,则当时,;‎ 当及时,‎ 故在单调减少,在单调增加。‎ ‎(iii)若,即,同理可得在单调减少,在单调增加.‎ ‎(II)考虑函数 ‎ 则 由于1
查看更多