- 2021-05-14 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学浙江专用总复习学生用书 命题及其关系充分条件与必要条件
第2讲 命题及其关系、充分条件与必要条件 最新考纲 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解必要条件、充分条件与充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件. 知 识 梳 理 1.命题 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. 2.四种命题及其相互关系 (1)四种命题间的相互关系 (2)四种命题的真假关系 ①两个命题互为逆否命题,它们具有相同的真假性. ②两个命题为互逆命题或互否命题时,它们的真假性没有关系. 3.充分条件、必要条件与充要条件的概念 若p⇒q,则p是q的充分条件,q是p的必要条件 p是q的充分不必要条件 p⇒q且qp p是q的必要不充分条件 pq且q⇒p p是q的充要条件 p⇔q p是q的既不充分也不必要条件 pq且qp 诊 断 自 测 1.判断正误(在括号内打“√”或“×”) (1)“x2+2x-3<0”是命题.( ) (2)命题“若p,则q”的否命题是“若p,则綈q”.( ) (3)当q是p的必要条件时,p是q的充分条件.( ) (4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( ) 2.(选修2-1P6练习改编)命题“若α=,则tan α=1”的逆否命题是( ) A.若α≠,则tan α≠1 B.若α=,则tan α≠1 C.若tan α≠1,则α≠ D.若tan α≠1,则α= 3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为( ) A.1 B.2 C.3 D.4 5.(2017·舟山双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f(x0)=f(-x0)”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 6.(2017·温州调研)已知命题p:“若a2=b2,则a=b”,则命题p的否命题为________,该否命题是一个________命题(填“真”,“假”). 考点一 四种命题的关系及其真假判断 【例1】 (1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为( ) A.“若x=4,则x2-3x-4=0”为真命题 B.“若x≠4,则x2-3x-4≠0”为真命题 C.“若x≠4,则x2-3x-4≠0”为假命题 D.“若x=4,则x2-3x-4=0”为假命题 (2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( ) A.真、假、真 B.假、假、真 C.真、真、假 D.假、假、假 【训练1】 已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( ) A.否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”,是真命题 B.逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题 C.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题 D.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题 考点二 充分条件与必要条件的判定 【例2】 (1)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( ) A.p是q的充分必要条件 B.p是q的充分条件,但不是q的必要条件 C.p是q的必要条件,但不是q的充分条件 D.p既不是q的充分要件,也不是q的必要条件 (2)(2017·衡阳一模)“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【训练2】 (2016·山东卷)已知直线a,b分别在两个不同的平面α ,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 考点三 充分条件、必要条件的应用(典例迁移) 【例3】 (经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围. 【迁移探究1】 本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件? 【迁移探究2】 本例条件不变,若綈P是綈S的必要不充分条件,求实数m的取值范围. 【训练3】 ax2+2x+1=0只有负实根的充要条件是________. 基础巩固题组 (建议用时:25分钟) 一、选择题 1.(2015·山东卷)设m∈R, 命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( ) A.若方程x2+x-m=0有实根,则m>0 B.若方程x2+x-m=0有实根,则m≤0 C.若方程x2+x-m=0没有实根,则m>0 D.若方程x2+x-m=0没有实根,则m≤0 2.“x=1”是“x2-2x+1=0”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 3.设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.(2017·安徽江南十校联考)“a=0”是“函数f(x)=sin x-+a为奇函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.下列结论错误的是( ) A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0” B.“x=4”是“x2-3x-4=0”的充分条件 C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题 D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0” 6.设x∈R,则“1查看更多