- 2021-05-14 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2000高考数学全国卷及答案理
2000年普通高等学校招生全国统一考试 数学(理工农医类) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟. 第Ⅰ卷(选择题共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的 (1) 设集合A和B都是自然数集合N,映射把集合A中的元素映射到集合B中的元素,则在映射下,象20的原象是 ( ) (A) 2 (B) 3 (C) 4 (D) 5 (2) 在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是 ( ) (A) 2 (B) (C) (D) 3 (3) 一个长方体共一顶点的三个面的面积分别是,,,这个长方体对角线的长是 ( ) (A) 2 (B) 3 (C) 6 (D) (4) 已知,那么下列命题成立的是 ( ) (A) 若、是第一象限角,则 (B) 若、是第二象限角,则 (C) 若、是第三象限角,则 (D) 若、是第四象限角,则 (5) 函数的部分图像是 ( ) (6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算: 全月应纳税所得额 税率 不超过500元的部分 5% 超过500元至2000元的部分 10% 超过2000元至5000元的部分 15% … … 某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 ( ) (A) 800~900元 (B) 900~1200元 (C) 1200~1500元 (D) 1500~2800元 (7) 若,P=,Q=,R=,则 ( ) (A) RPQ (B) PQ R (C) Q PR (D) P RQ (8) 以极坐标系中的点为圆心,1为半径的圆的方程是 ( ) (A) (B) (C) (D) (9) 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( ) (A) (B) (C) (D) (10) 过原点的直线与圆相切,若切点在第三象限,则该直线的方程是 ( ) (A) (B) (C) (D) (11) 过抛物线的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则等于 ( ) (A) (B) (C) (D) (12) 如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为 ( ) (A) (B) (C) (D) 第II卷(非选择题共90分) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13) 乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答) (14) 椭圆的焦点为、,点P为其上的动点,当为钝角时,点P横坐标的取值范围是________ (15) 设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=_______ (16) 如图,E、F分别为正方体的面、面 的中心,则四边形在该正方体的面上的射影可能是_______.(要求:把可能的图的序号都填上) 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17) (本小题满分12分) 已知函数,. (I) 当函数取得最大值时,求自变量的集合; (II) 该函数的图像可由的图像经过怎样的平移和伸缩变换得到? (18) (本小题满分12分) 如图,已知平行六面体ABCD-的底面ABCD是菱形,且===. (I) 证明:⊥BD; (II) 假定CD=2,=,记面为,面CBD为,求二面角 的平面角的余弦值; (III) 当的值为多少时,能使平面?请给出证明. (19) (本小题满分12分) 设函数,其中. (I) 解不等式; (II) 求的取值范围,使函数在区间上是单调函数. (20) (本小题满分12分) (I) 已知数列,其中,且数列为等比数列,求常数; (II) 设、是公比不相等的两个等比数列,,证明数列不是等比数列. (21) (本小题满分12分) 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (Ⅰ) 写出图一表示的市场售价与时间的函数关系式P=; 写出图二表示的种植成本与时间的函数关系式Q=; (Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大? (注:市场售价和种植成本的单位:元/kg,时间单位:天) (22) (本小题满分14分) 如图,已知梯形ABCD中,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B为焦点.当时,求双曲线离心率的取值范围. 2000年普通高等学校招生全国统一考试 数学试题(理工农医类)参考解答及评分标准 一.选择题:本题考查基本知识和基本运算,每小题5分,满分60分. (1)C (2)B (3)D (4)D (5)D (6)C (7)B (8)C (9)A (10)C (11)C (12)D 二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分. (13)252 (14)- (15) (16)②③ 三.解答题 (17)本小题主要考查三角函数的图像和性质,考查利用三角公式进行恒等变形的技能以及运算能力.满分12分. 解:(Ⅰ) y=cos2x+sinxcosx+1 =(2cos2x-1)++(2sinxcosx)+1 =cos2x+sin2x+=(cos2x·sin+sin2x·cos)+ =sin(2x+)+ ——6分 y取得最大值必须且只需 2x+=+2kπ,k∈Z, 即 x=+kπ,k∈Z. 所以当函数y取得最大值时,自变量x的集合为 {x|x=+kπ,k∈Z } ——8分 (Ⅱ)将函数y=sinx依次进行如下变换: (i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像; (ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像; (iii)把得到的图像上各点纵坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像; (iv)把得到的图像向上平移个单位长度,得到函数y=sin(2x+)+的图像;综上得到函数y=cos2x+sinxcosx+1的图像. ——12分 (18)本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,满分12分. (Ⅰ)证明:连结A1C1、AC、AC和BD交于O,连结C1O. ∵ 四边形ABCD是菱形, ∴ AC⊥BD,BD=CD. 又∵∠BCC1=∠DCC1,C1C= C1C, ∴ △C1BC≌△C1DC ∴ C1B=C1D, ∵ DO=OB ∴ C1O⊥BD, ——2分 但AC⊥BD,AC∩C1O=O, ∴ BD⊥平面AC1, 又C1C平面AC1 ∴ C1C⊥BD. ——4分 (Ⅱ)解:由(Ⅰ)知AC⊥BD,C1O⊥BD, ∴ ∠C1OC是二面角α—BD—β的平面角. 在△C1BC中,BC=2,C1C=,∠BCC1=60º, ∴ C1B2=22+()2-2×2××cos60º= ——6分 ∵ ∠OCB=30º, ∴ OB=BC=1. ∴C1O2= C1B2-OB2=, ∴ C1O=即C1O= C1C. 作 C1H⊥OC,垂足为H. ∴ 点H是OC的中点,且OH=, 所以cos∠C1OC==. ——8分 (Ⅲ)当=1时,能使A1C⊥平面C1BD 证明一: ∵ =1, ∴ BC=CD= C1C, 又∠BCD=∠C1CB=∠C1CD, 由此可推得BD= C1B = C1D. ∴ 三棱锥C-C1BD是正三棱锥. ——10分 设A1C与C1O相交于G. ∵ A1 C1∥AC,且A1 C1∶OC=2∶1, ∴ C1G∶GO=2∶1. 又C1O是正三角形C1BD的BD边上的高和中线, ∴ 点G是正三角形C1BD的中心, ∴ CG⊥平面C1BD. 即A1C⊥平面C1BD. ——12分 证明二: 由(Ⅰ)知,BD⊥平面AC1, ∵ A1 C平面AC1,∴BD⊥A1 C. ——10分 当=1时,平行六面体的六个面是全等的菱形, 同BD⊥A1 C的证法可得BC1⊥A1C, 又BD⊥BC1=B, ∴ A1C⊥平面C1BD. ——12分 (19) 本小题主要考查不等式的解法、函数的单调性等基本知识,分类讨论的数学思想方法和运算、推理能力.满分12分. 解:(Ⅰ)不等式f(x) ≤1即 ≤1+ax, 由此得1≤1+ax,即ax≥0,其中常数a>0. 所以,原不等式等价于 即 ——3分 所以,当0<a<1时,所给不等式的解集为{x|0}; 当a≥1时,所给不等式的解集为{x|x≥0}. ——6分 (Ⅱ)在区间[0,+∞]上任取x1、x2,使得x1<x2. f(x1)-f(x2)= --a(x1-x2) =-a(x1-x2) =(x1-x2)(-a). ——8分 (ⅰ)当a≥1时 ∵ <1 ∴ -a<0, 又x1-x2<0, ∴ f(x1)-f(x2)>0, 即f(x1)>f(x2). 所以,当a≥1时,函数f(x)在区间上是单调递减函数. ——10分 (ii)当02pq,又a1、b1不为零, 因此c1·c3,故{cn}不是等比数列. ——12分 (21)本小题主要考查由函数图像建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力,满分12分. 解:(Ⅰ)由图一可得市场售价与时间的函数关系为 f(t)= ——2分 由图二可得种植成本与时间的函数关系为 g(t)=(t-150)2+100,0≤t≤300. ——4分 (Ⅱ)设t时刻的纯收益为h(t),则由题意得 h(t)=f(t)-g(t) 即h(t)= ——6分 当0≤t≤200时,配方整理得 h(t)=-(t-50)2+100, 所以,当t=50时,h(t)取得区间[0,200]上的最大值100; 当200查看更多