- 2021-05-14 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国高考文科数学试题及答案江西卷
2012年普通高等学校招生全国统一考试(江西卷) 文科数学 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。满分150分,考试时间120分钟。 考生注意: 1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。 2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。 3.考试结束,务必将试卷和答题卡一并上交。 参考公式: 锥体体积公式V=Sh,其中S为底面积,h为高。 (1) 选择题:本大题共10小题,每小题5分,共50分, 在每小题给出的四个选项中,只有一项是符合题目要求的 1. 若复数z=1+i (i为虚数单位) 是z的共轭复数 , 则+²的虚部为 A 0 B -1 C 1 D -2 【答案】A 【解析】考查复数的基本运算 2 若全集U={x∈R|x2≤4} A={x∈R||x+1|≤1}的补集CuA为 A |x∈R |0<x<2| B |x∈R |0≤x<2| C |x∈R |0<x≤2| D |x∈R |0≤x≤2| 【答案】C 【解析】考查集合的基本运算 ,,则. 3.设函数,则f(f(3))= A. B.3 C. D. 【答案】D 【解析】考查分段函数,f(3)=,f(f(3))=f()= 4.若,则tan2α= A. - B. C. - D. 【答案】B 【解析】主要考查三角函数的运算,分子分母同时除以可得,带入所求式可得结果. 5. 观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4 , |x|+|y|=2的不同整数解(x,y)的个数为8, |x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为 A.76 B.80 C.86 D.92 【答案】B 【解析】本题主要为数列的应用题,观察可得不同整数解的个数可以构成一个首先为4,公差为4的等差数列,则所求为第20项,可计算得结果. 6.小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为 A.30% B.10% C.3% D.不能确定 【答案】C 【解析】本题是一个读图题,图形看懂结果很容易计算. 7.若一个几何体的三视图如图所示,则此几何体的体积为 A. B.5 C.4 D. 【答案】C 【解析】本题的主视图是一个六棱柱,由三视图可得地面为变长为1的正六边形,高为1,则直接带公式可求. 8.椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为 A. B. C. D. 【答案】C[来源:学+科+网Z+X+X+K] 【解析】本题主要考查椭圆和等比数列的知识,根据等比中项的性质可得结果. 9.已知若a=f(lg5),则 A.a+b=0 B.a-b=0 C.a+b=1 D.a-b=1 【答案】C 【解析】本题可采用降幂处理,则 ,则可得a+b=1. 10.如右图,OA=2(单位:m),OB=1(单位:m),OA与OB的夹角为,以A为圆心,AB为半径作圆弧与线段OA延长线交与点C.甲。乙两质点同时从点O出发,甲先以速度1(单位:ms)沿线段OB行至点B,再以速度3(单位:ms)沿圆弧行至点C后停止,乙以速率2(单位:m/s)沿线段OA行至A点后停止。设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图像大致是 【答案】A 文科数学 第Ⅱ卷 注意事项: 第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。 二。填空题:本大题共5小题,每小题5分,共25分。 11. 不等式的解集是___________。 【答案】 【解析】不等式可化为采用穿针引线法解不等式即可. 12.设单位向量m=(x,y),b=(2,-1)。若,则=_______________ 【答案】 【解析】由已知可得,又因为m为单位向量所以,联立解得或代入所求即可. 13.等比数列{an}的前n项和为Sn,公比不为1。若a1=1,且对任意的都有an+2+an+1-2an=0,则S5=_________________。 【答案】11 【解析】由已知可得公比q=-2,则a1=1可得S5。 14.过直线x+y-=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是__________。 【答案】() 【解析】本题主要考查数形结合的思想,设p(x,y),则由已知可得po(0为原点)与切线的夹角为,则|po|=2,由可得. 15.下图是某算法的程序框图,则程序运行后输入的结果是_________。 【答案】3 【解析】当k=1,a=1,T=1 当k=2,a=0,T=1 当k=3,a=0,T=1 当k=4,a=1,T=2 当k=5,a=1,T=3,则此时k=k+1=6所以输出T=3. 三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。 16.(本小题满分12分) △ABC中,角A,B,C的对边分别为a,b,c。已知3cos(B-C)-1=6cosBcosC。[来源:] (1)求cosA; (2)若a=3,△ABC的面积为,求b,c。 【解析】(1)则. (2) 由(1)得,由面积可得bc=6①,则根据余弦定理 则=13②,①②两式联立可得b=1,c=5或b=5,c=1. 17.(本小题满分12分) 已知数列|an|的前n项和(其中c,k为常数),且a2=4,a6=8a3 (1)求an; (2)求数列{nan}的前n项和Tn。 【解析】(1)当时, 则 , ,∴c=2.∵a2=4,即,解得k=2,∴(n)1) 当n=1时, 综上所述 (2) ,则 (1)-(2)得 18.(本小题满分12分) 如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0,)B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点。 (1) 求这3点与原点O恰好是正三棱锥的四个顶点的概率; (2) 求这3点与原点O共面的概率。 【解析】(1)总的结果数为20种,则满足条件的种数为2种所以所求概率为[来源:Z§xx§k.Com] (2)满足条件的情况为,,,,, ,所以所求概率为. 19. (本小题满分12分) 如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG. (1) 求证:平面DEG⊥平面CFG; (2) 求多面体CDEFG的体积。 【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得 又因为,可得,即所以平面DEG⊥平面CFG. (2)过G作GO垂直于EF,GO 即为四棱锥G-EFCD的高,所以所求体积为 20.(本小题满分13分) 已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足 (1)求曲线C的方程; (2)点Q(x0,y0)(-2查看更多
相关文章
- 当前文档收益归属上传用户