高考数学理专题目二第一讲三角函数的图象与性质二轮复习

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学理专题目二第一讲三角函数的图象与性质二轮复习

第一讲 三角函数的图象与性质 ‎1.(2013·高考浙江卷)函数f(x)=sin xcos x+cos 2x的最小正周期和振幅分别是(  )‎ A.π,1         B.π,2‎ C.2π,1 D.2π,2‎ ‎2.(2013·高考浙江卷)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的(  )‎ A.充分不必要条件 ‎ B.必要不充分条件 C.充分必要条件 ‎ D.既不充分也不必要条件 ‎3.(2013·荆州市质量检测)将函数y=sin的图象向左平移个单位,再向上平移2个单位,则所得图象的一个对称中心是(  )‎ A.(,2) B.(,2)‎ C.(,2) D.(,2)‎ ‎4.已知函数f(x)=sin x+cos x,设a=f(),b=f(),c=f(),则a,b,c的大小关系是(  )‎ A.a0,ω>0,|φ|<)的部分图象如图所示.若函数y=f(x)在区间[m,n]上的值域为[-,2],则n-m的最小值是(  )‎ A.1  B.2‎ C.3 D.4‎ ‎6.已知角θ的顶点为坐标原点,始边为x轴的正半轴,若P(4,y)是角θ终边上的一点,且sin θ=-,则y=______.‎ ‎7.(2013·高考江西卷)设f(x)=sin 3x+cos 3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.‎ ‎8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(00),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.‎ ‎ (1)求ω的值;‎ ‎ (2)求f(x)在区间[π,]上的最大值和最小值.‎ ‎11.(2013·山西省诊断考试)已知向量a=(sin x,1),b=(1,cos x),且函数f(x)=a·b,f′(x)是f(x)的导函数.‎ ‎(1)求函数F(x)=f(x)f′(x)+f2(x)的最大值和最小正周期;‎ ‎(2)将f(x)横坐标缩短为原来的一半,再向右平移个单位得到g(x),设方程g(x)-1=0在(0,π)上的两个零点为x1,x2,求x1+x2的值.‎ 答案:‎ ‎1.【解析】选A.f(x)=sin 2x+cos 2x=sin(2x+),所以最小正周期为T==π,振幅A=1.‎ ‎2.【解析】选B.若f(x)是奇函数,则f(0)=0,所以cos φ=0,所以φ=+kπ(k∈Z),故φ=不成立;‎ 若φ=,则f(x)=Acos(ωx+)=-Asin ωx,f(x)是奇函数.所以f(x)是奇函数是φ=的必要不充分条件.‎ ‎3.【解析】选C.将y=sin(2x+)的图象向左平移个单位,再向上平移2个单位得y=sin(2x+)+2的图象,其对称中心的横坐标满足2x+=kπ,即x=-,k∈Z,取k=1,则x=,故选C.‎ ‎4.【解析】选B.f(x)=sin x+cos x=2sin(x+),因为函数f(x)在[0,]上单调递增,所以f()0,所以=4×.‎ 因此ω=1.‎ ‎(2)由(1)知f(x)=-sin(2x-).‎ 当π≤x≤时,≤2x-≤.‎ 所以-≤sin(2x-)≤1.‎ 因此-1≤f(x)≤.‎ 故f(x)在区间[π,]上的最大值和最小值分别为,-1.‎ ‎11.【解】(1)由题意知f(x)=sin x+cos x,‎ ‎∴f′(x)=cos x-sin x,‎ ‎∴F(x)=f(x)f′(x)+f2(x)‎ ‎=cos2x-sin2x+1+2sin xcos x ‎=1+sin 2x+cos 2x=1+sin(2x+),‎ ‎∴当2x+=2kπ+,即x=kπ+(k∈Z)时,‎ F(x)max=1+,最小正周期为T==π.‎ ‎(2)由题设得f(x)=sin(x+),‎ ‎∴g(x)=sin[2(x-)+]=-cos(2x+).‎ ‎∵g(x)-1=0,∴cos(2x+)=-1,‎ ‎∴cos(2x+)=-,‎ 由2x+=2kπ+π或2x+=2kπ+,‎ 得x=kπ+或x=kπ+,k∈Z.‎ ‎∵x∈(0,π),∴x1=,x2=,‎ ‎∴x1+x2=π.‎
查看更多

相关文章

您可能关注的文档