- 2021-05-13 发布 |
- 37.5 KB |
- 30页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学试题分类汇编解析几何
五、解析几何 一、选择题 1.(重庆理8)在圆内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为 A. B. C. D. 【答案】B 2.(浙江理8)已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于两点,若恰好将线段三等分,则 A. B. C. D. 【答案】C 3.(四川理10)在抛物线上取横坐标为,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆相切,则抛物线顶点的坐标为 A. B. C. D. 【答案】C 【解析】由已知的割线的坐标,设直线方程为,则 又 4.(陕西理2)设抛物线的顶点在原点,准线方程为,则抛物线的方程是 A. B. C. D. 【答案】B 5.(山东理8)已知双曲线的两条渐近线均和圆C:相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为 A. B. C. D. 【答案】A 6.(全国新课标理7)已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,l与C交于A,B两点,为C的实轴长的2倍,C的离心率为 (A) (B) (C) 2 (D) 3 【答案】B 7.(全国大纲理10)已知抛物线C:的焦点为F,直线与C交于A,B两点.则= A. B. C. D. 【答案】D 8.(江西理9)若曲线:与曲线:有四个不同的交点,则实数m的取值范围是 A.(,) B.(,0)∪(0,) C.[,] D.(,)∪(,+) 【答案】B 9.(湖南理5)设双曲线的渐近线方程为,则的值为 A.4 B.3 C.2 D.1 【答案】C 10.(湖北理4)将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则 A.n=0 B.n=1 C. n=2 D.n 3 【答案】C 11.(福建理7)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于 A. B.或2 C.2 D. 【答案】A 12.(北京理8)设,,,.记为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数的值域为 A. B. C. D. 【答案】C 13.(安徽理2)双曲线的实轴长是 (A)2 (B) 2 (C) 4 (D)4 【答案】C 14.(辽宁理3)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为 (A) (B)1 (C) (D) 【答案】C 二、填空题 15.(湖北理14)如图,直角坐标系所在的平面为,直角坐标系(其中轴一与 轴重合)所在的平面为,。 (Ⅰ)已知平面内有一点,则点在平面内的射影的 坐标为 ; (Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。 【答案】(2,2) 16.(浙江理17)设分别为椭圆的左、右焦点,点在椭圆上,若 ;则点的坐标是 . 【答案】 17.(上海理3)设为常数,若点是双曲线的一个焦点,则 。 【答案】16 18.(江西理14)若椭圆的焦点在轴上,过点(1,)作圆的切线,切点分别为A,B,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是 【答案】 19.(北京理14)曲线C是平面内与两个定点F1(-1,0)和F¬2(1,0)的距离的积等于常数的点的轨迹.给出下列三个结论: ① 曲线C过坐标原点; ② 曲线C关于坐标原点对称; ③若点P在曲线C上,则△FPF的面积大于a。 其中,所有正确结论的序号是 。 【答案】②③ 20.(四川理14)双曲线P到左准线的距离是 . 【答案】 【解析】,点显然在双曲线右支上,点到左焦点的距离为14,所以 21.(全国大纲理15)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2∠的平分线.则|AF2| = . 【答案】6 22.(辽宁理13)已知点(2,3)在双曲线C:上,C的焦距为4 ,则它的离心率为 . 【答案】2 23.(重庆理15)设圆C位于抛物线与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为__________ 【答案】 24.(全国新课标理14)(14) 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点在x轴上,离心率为.过点的直线l交C于A,B两点,且的周长为16,那么C的方程为_________. 【答案】 25.(安徽理15)在平面直角坐标系中,如果与都是整数,就称点为整点, 下列命题中正确的是_____________(写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果与都是无理数,则直线不经过任何整点 ③直线经过无穷多个整点,当且仅当经过两个不同的整点 ④直线经过无穷多个整点的充分必要条件是:与都是有理数 ⑤存在恰经过一个整点的直线 【答案】①,③,⑤ 三、解答题 26.(江苏18)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN,求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA 过坐标原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 (3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二: 设. 设直线PB,AB的斜率分别为因为C在直线AB上,所以 从而 因此 27.(安徽理21)设,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。 本题考查直线和抛物线的方程,平面向量的概念,性质与运算,动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力,全面考核综合数学素养. 解:由知Q,M,P三点在同一条垂直于x轴的直线上,故可设 ① 再设 解得 ② 将①式代入②式,消去,得 ③ 又点B在抛物线上,所以,再将③式代入,得 故所求点P的轨迹方程为 28. (北京理19) 已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率; (II)将表示为m的函数,并求的最大值. (19)(共14分) 解:(Ⅰ)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (Ⅱ)由题意知,. 当时,切线l的方程,点A、B的坐标分别为 此时 当m=-1时,同理可得 当时,设切线l的方程为 由 设A、B两点的坐标分别为,则 又由l与圆 所以 由于当时, 所以. 因为 且当时,|AB|=2,所以|AB|的最大值为2. 29.(福建理17)已知直线l:y=x+m,m∈R。 (I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程; (II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。 本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。满分13分。 解法一: (I)依题意,点P的坐标为(0,m) 因为,所以, 解得m=2,即点P的坐标为(0,2) 从而圆的半径 故所求圆的方程为 (II)因为直线的方程为 所以直线的方程为 由 (1)当时,直线与抛物线C相切 (2)当,那时,直线与抛物线C不相切。 综上,当m=1时,直线与抛物线C相切; 当时,直线与抛物线C不相切。 解法二: (I)设所求圆的半径为r,则圆的方程可设为 依题意,所求圆与直线相切于点P(0,m), 则 解得 所以所求圆的方程为 (II)同解法一。 30.(广东理19) 设圆C与两圆中的一个内切,另一个外切。 (1)求C的圆心轨迹L的方程; (2)已知点M,且P为L上动点,求的最大值及此时点P的坐标. (1)解:设C的圆心的坐标为,由题设条件知 化简得L的方程为 (2)解:过M,F的直线方程为,将其代入L的方程得 解得 因T1在线段MF外,T2在线段MF内,故 ,若P不在直线MF上,在中有 故只在T1点取得最大值2。 31.(湖北理20) 平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线. (Ⅰ)求曲线的方程,并讨论的形状与值得关系; (Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积 。若存在,求的值;若不存在,请说明理由。 本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分) 解:(I)设动点为M,其坐标为, 当时,由条件可得 即, 又的坐标满足 故依题意,曲线C的方程为 当曲线C的方程为是焦点在y轴上的椭圆; 当时,曲线C的方程为,C是圆心在原点的圆; 当时,曲线C的方程为,C是焦点在x轴上的椭圆; 当时,曲线C的方程为C是焦点在x轴上的双曲线。 (II)由(I)知,当m=-1时,C1的方程为 当时, C2的两个焦点分别为 对于给定的, C1上存在点使得的充要条件是 ② ① 由①得由②得 当 或时, 存在点N,使S=|m|a2; 当 或时, 不存在满足条件的点N, 当时, 由, 可得 令, 则由, 从而, 于是由, 可得 综上可得: 当时,在C1上,存在点N,使得 当时,在C1上,存在点N,使得 当时,在C1上,不存在满足条件的点N。 32.(湖南理21) 如图7,椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (Ⅰ)求C1,C2的方程; (Ⅱ)设C2与y轴的焦点为M,过坐标原点O的直线与C2相交于点A,B,直线MA,MB分别与C1相交与D,E. (i)证明:MD⊥ME; (ii)记△MAB,△MDE的面积分别是.问:是否存在直线l,使得?请说明理由。 解 :(Ⅰ)由题意知 故C1,C2的方程分别为 (Ⅱ)(i)由题意知,直线l的斜率存在,设为k,则直线l的方程为. 由得 . 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MA⊥MB,即MD⊥ME. (ii)设直线MA的斜率为k1,则直线MA的方程为解得 则点A的坐标为. 又直线MB的斜率为, 同理可得点B的坐标为 于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为 于是. 因此 由题意知, 又由点A、B的坐标可知, 故满足条件的直线l存在,且有两条,其方程分别为 33.(辽宁理20) 如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D. (I)设,求与的比值; (II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由. 解:(I)因为C1,C2的离心率相同,故依题意可设 设直线,分别与C1,C2的方程联立,求得 ………………4分 当表示A,B的纵坐标,可知 ………………6分 (II)t=0时的l不符合题意.时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即 解得 因为 所以当时,不存在直线l,使得BO//AN; 当时,存在直线l使得BO//AN. ………………12分 34.(全国大纲理21) 已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足 (Ⅰ)证明:点P在C上; (Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上. 解: (I)F(0,1),的方程为, 代入并化简得 …………2分 设 则 由题意得 所以点P的坐标为 经验证,点P的坐标为满足方程 故点P在椭圆C上。 …………6分 (II)由和题设知, PQ的垂直平分线的方程为 ① 设AB的中点为M,则,AB的垂直平分线为的方程为 ② 由①、②得的交点为。 …………9分 故|NP|=|NA|。 又|NP|=|NQ|,|NA|=|NB|, 所以|NA|=|NP|=|NB|=|MQ|, 由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上 …………12分 35.(全国新课标理20) 在平面直角坐标系xOy中, 已知点A(0,-1),B点在直线上,M点满足,,M点的轨迹为曲线C. (I)求C的方程; (II)P为C上动点,为C在点P处的切线,求O点到距离的最小值. (20)解: (Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1). 所以=(-x,-1-y), =(0,-3-y), =(x,-2). 再由题意可知(+)• =0, 即(-x,-4-2y)• (x,-2)=0. 所以曲线C的方程式为y=x-2. (Ⅱ)设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x 因此直线的方程为,即. 则O点到的距离.又,所以 当=0时取等号,所以O点到距离的最小值为2. 36.(山东理22) 已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点. (Ⅰ)证明和均为定值; (Ⅱ)设线段PQ的中点为M,求的最大值; (Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由. (I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称, 所以 因为在椭圆上, 因此 ① 又因为 所以 ② 由①、②得 此时 (2)当直线的斜率存在时,设直线的方程为 由题意知m,将其代入,得 , 其中 即 …………(*) 又 所以 因为点O到直线的距离为 所以 又 整理得且符合(*)式, 此时 综上所述,结论成立。 (II)解法一: (1)当直线的斜率存在时, 由(I)知 因此 (2)当直线的斜率存在时,由(I)知 所以 所以,当且仅当时,等号成立. 综合(1)(2)得|OM|·|PQ|的最大值为 解法二: 因为 所以 即当且仅当时等号成立。 因此 |OM|·|PQ|的最大值为 (III)椭圆C上不存在三点D,E,G,使得 证明:假设存在, 由(I)得 因此D,E,G只能在这四点中选取三个不同点, 而这三点的两两连线中必有一条过原点, 与矛盾, 所以椭圆C上不存在满足条件的三点D,E,G. 37.(陕西理17) 如图,设P是圆上的动点,点D是P在x轴上的摄影,M为PD上一点,且 (Ⅰ)当P在圆上运动时,求点M的轨迹C的方程; (Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度 解:(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp) 由已知得 ∵P在圆上, ∴ ,即C的方程为 (Ⅱ)过点(3,0)且斜率为的直线方程为, 设直线与C的交点为 将直线方程代入C的方程,得 即 ∴ ∴ 线段AB的长度为 注:求AB长度时,利用韦达定理或弦长公式求得正确结果,同样得分。 38.(上海理23) 已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作。 (1)求点到线段的距离; (2)设是长为2的线段,求点集所表示图形的面积; (3)写出到两条线段距离相等的点的集合,其中 , 是下列三组点中的一组。对于下列三组点只需选做一种,满分分别是①2分,② 6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。 。 ② 。 ③ 。 解:⑴ 设是线段上一点,则 ,当时,。 ⑵ 设线段的端点分别为,以直线为轴,的中点为原点建立直角坐标系, 则,点集由如下曲线围成 , 其面积为。 ⑶ ① 选择, ② 选择。 ③ 选择。 39.(四川理21) 椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q. (I)当|CD | = 时,求直线l的方程; (II)当点P异于A、B两点时,求证:为定值。 解:由已知可得椭圆方程为,设的方程为为的斜率。 则 的方程为 40.(天津理18)在平面直角坐标系中,点为动点, 分别为椭圆的左右焦点.已知△为等腰三角形. (Ⅰ)求椭圆的离心率; (Ⅱ)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程. 本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分. (I)解:设 由题意,可得 即 整理得(舍), 或所以 (II)解:由(I)知 可得椭圆方程为 直线PF2方程为 A,B两点的坐标满足方程组 消去y并整理,得 解得 得方程组的解 不妨设 设点M的坐标为, 由 于是 由 即, 化简得 将 所以 因此,点M的轨迹方程是 41.(浙江理21) 已知抛物线:=,圆:的圆心为点M (Ⅰ)求点M到抛物线的准线的距离; (Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程 本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。满分15分。 (I)解:由题意可知,抛物线的准线方程为: 所以圆心M(0,4)到准线的距离是 (II)解:设, 则题意得, 设过点P的圆C2的切线方程为, 即 ① 则 即, 设PA,PB的斜率为,则是上述方程的两根,所以 将①代入 由于是此方程的根, 故,所以 由,得, 解得 即点P的坐标为, 所以直线的方程为 42.(重庆理20)如题(20)图,椭圆的中心为原点,离心率,一条准线的方程为. (Ⅰ)求该椭圆的标准方程; (Ⅱ)设动点满足:,其中是椭圆上的点,直线与的斜率之积为,问:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由. 解:(I)由 解得,故椭圆的标准方程为 (II)设,则由 得 因为点M,N在椭圆上,所以 , 故 设分别为直线OM,ON的斜率,由题设条件知 因此 所以 所以P点是椭圆上的点,设该椭圆的左、右焦点为F1,F2,则由椭圆的定义|PF1|+|PF2|为定值,又因,因此两焦点的坐标为查看更多