- 2021-05-13 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题4中考数学三角形存在性
第四讲 例1如图,已知一次函数y = - x +7与正比例函数y = x的图象交于点A,且与x轴交于点B. (1)求点A和点B的坐标; (2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒. ①当t为何值时,以A、P、R为顶点的三角形的面积为8? (备用图) ②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由. . 解:(1)根据题意,得,解得 ,∴A(3,4) . 令y=-x+7=0,得x=7.∴B(7,0). (2)①当P在OC上运动时,0≤t<4. 由S△APR=S梯形COBA-S△ACP-S△POR-S△ARB=8,得 (3+7)×4-×3×(4-t)- t(7-t)- t×4=8 整理,得t2-8t+12=0, 解之得t1=2,t2=6(舍) 当P在CA上运动,4≤t<7. 由S△APR= ×(7-t) ×4=8,得t=3(舍) ∴当t=2时,以A、P、R为顶点的三角形的面积为8. ②当P在OC上运动时,0≤t<4. ∴AP=,AQ=t,PQ=7-t 当AP =AQ时, (4-t)2+32=2(4-t)2, 整理得,t2-8t+7=0. ∴t=1, t=7(舍) 当AP=PQ时,(4-t)2+32=(7-t)2, 整理得,6t=24. ∴t=4(舍去) 当AQ=PQ时,2(4-t)2=(7-t)2 整理得,t2-2t-17=0 ∴t=1±3 (舍) 当P在CA上运动时,4≤t<7. 过A作AD⊥OB于D,则AD=BD=4. 设直线l交AC于E,则QE⊥AC,AE=RD=t-4,AP=7-t. 由cos∠OAC= = ,得AQ = (t-4). 当AP=AQ时,7-t = (t-4),解得t = . 当AQ=PQ时,AE=PE,即AE= AP 得t-4= (7-t),解得t =5. 当AP=PQ时,过P作PF⊥AQ于F AF= AQ = ×(t-4). 在Rt△APF中,由cos∠PAF= = ,得AF= AP 即 ×(t-4)= ×(7-t),解得t= . ∴综上所述,t=1或 或5或 时,△APQ是等腰三角形. 例2如图,在平面直角坐标系xoy中,抛物线与x轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒) (1)求A,B,C三点的坐标和抛物线的顶点的坐标; (2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程; (3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t为何值时,△PQF为等腰三角形?请写出解答过程. 解:(1),令得, ∴或∴; 在中,令得即; 由于BC∥OA,故点C的纵坐标为-10,由得或 即且易求出顶点坐标为 于是,,顶点坐标为。 (2)若四边形PQCA为平行四边形,由于QC∥PA。故只要QC=PA即可,而故得; (3)设点P运动秒,则,,说明P在线段OA上,且不与点OA、重合, 由于QC∥OP知△QDC∽△PDO,故 ∴∴ 又点Q到直线PF的距离,∴, 于是△PQF的面积总为90。 (4)由上知,,。构造直角三角形后易得 , ① 若FP=PQ,即,故, ∵∴∴ ② 若QP=QF,即,无的满足条件; ① 若PQ=PF,即,得,∴或都不满足,故无的满足方程; 综上所述:当时,△PQR是等腰三角形。 例3.如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。 解 (1)将A(0,1)、B(1,0)坐标代入得解得 ∴抛物线的解折式为 (2)设点E的横坐标为m,则它的纵坐标为 即 E点的坐标(,)又∵点E在直线上 ∴ 解得(舍去), ∴E的坐标为(4,3) (Ⅰ)当A为直角顶点时 过A作AP1⊥DE交x轴于P1点,设P1(a,0) 易知D点坐标为(-2,0) 由Rt△AOD∽Rt△POA得 即,∴a= ∴P1(,0) (Ⅱ)同理,当E为直角顶点时,P2点坐标为(,0) (Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(、)由∠OPA+∠FPE=90°,得∠OPA=∠FEP Rt△AOP∽Rt△PFE 由得 解得, ∴此时的点P3的坐标为(1,0)或(3,0) 综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0) (Ⅲ)抛物线的对称轴为 ∵B、C关于x=对称 ∴MC=MB 要使最大,即是使最大 由三角形两边之差小于第三边得,当A、B、M在同一直线上时的值最大. 易知直线AB的解折式为∴由 得 ∴M(,-) 例4如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别 从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上), 当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时, 可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的 时间为x秒。试解答下列问题: (1)说明△FMN∽△QWP; (2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形? 当x在何范围时,△PQW不为直角三角形? 第22题图(2) A B C D F M N W P Q (3)问当x为何值时,线段MN最短?求此时MN的值。 第22题图(1) A B M C F D N W P Q (1)提示:∵PQ∥FN,PW∥MN ∴∠QPW =∠PWF,∠PWF =∠MNF ∴∠QPW =∠MNF 同理可得:∠PQW =∠NFM或∠PWQ =∠NFM ∴△FMN∽△QWP (2)当时,△PQW为直角三角形; 当0≤x<,查看更多
相关文章
- 当前文档收益归属上传用户