- 2021-05-13 发布 |
- 37.5 KB |
- 29页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
苏州市中考数学卷含解析
2018年江苏省苏州市中考数学试卷 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分) 1.(3.00分)在下列四个实数中,最大的数是( ) A.﹣3 B.0 C. D. 2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为( ) A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106 3.(3.00分)下列四个图案中,不是轴对称图案的是( ) A. B. C. D. 4.(3.00分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是( ) A. B. C. D. 5.(3.00分)计算(1+)÷的结果是( ) A.x+1 B. C. D. 6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( ) A. B. C. D. 7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为( ) A.100° B.110° C.120° D.130° 8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( ) A.40海里 B.60海里 C.20海里 D.40海里 9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为( ) A.3 B.4 C.2 D.3 10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为( ) A.3 B.2 C.6 D.12 二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分) 11.(3.00分)计算:a4÷a= . 12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是 . 13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= . 14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为 . 15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为 °. 16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为 . 17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′= . 18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为 (结果留根号). 三、解答题(每题只有一个正确选项,本题共10小题,共76分) 19.(5.00分)计算:|﹣|+﹣()2. 20.(5.00分)解不等式组: 21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF. 22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3. (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解). 23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题: (1)求参加这次调查的学生人数,并补全条形统计图; (2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数; (3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人? 24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元. (1)求每台A型电脑和每台B型打印机的价格分别是多少元? (2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机? 25.(8.00分)如图,已知抛物线y=x2 ﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D. (1)求线段AD的长; (2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式. 26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC. (1)求证:CD=CE; (2)若AE=GE,求证:△CEO是等腰直角三角形. 27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′. (1)当AD=3时,= ; (2)设AD=m,请你用含字母m的代数式表示. 问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△ EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示. 28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示, (1)求图②中线段MN所在直线的函数表达式; (2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由. 2018年江苏省苏州市中考数学试卷 参考答案与试题解析 一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分) 1.(3.00分)在下列四个实数中,最大的数是( ) A.﹣3 B.0 C. D. 【解答】解:根据题意得:﹣3<0<<, 则最大的数是:. 故选:C. 2.(3.00分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为( ) A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106 【解答】解:384 000=3.84×105. 故选:C. 3.(3.00分)下列四个图案中,不是轴对称图案的是( ) A. B. C. D. 【解答】解:A、是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项正确; C、是轴对称图形,故本选项错误; D、是轴对称图形,故本选项错误. 故选:B. 4.(3.00分)若 在实数范围内有意义,则x的取值范围在数轴上表示正确的是( ) A. B. C. D. 【解答】解:由题意得x+2≥0, 解得x≥﹣2. 故选:D. 5.(3.00分)计算(1+)÷的结果是( ) A.x+1 B. C. D. 【解答】解:原式=(+)÷ =• =, 故选:B. 6.(3.00分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( ) A. B. C. D. 【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4, ∴飞镖落在阴影部分的概率是, 故选:C. 7.(3.00分)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是 上的点,若∠BOC=40°,则∠D的度数为( ) A.100° B.110° C.120° D.130° 【解答】解:∵∠BOC=40°, ∴∠AOC=180°﹣40°=140°, ∴∠D=, 故选:B. 8.(3.00分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( ) A.40海里 B.60海里 C.20海里 D.40海里 【解答】解:在Rt△PAB中,∵∠APB=30°, ∴PB=2AB, 由题意BC=2AB, ∴PB=BC, ∴∠C=∠CPB, ∵∠ABP=∠C+∠CPB=60°, ∴∠C=30°, ∴PC=2PA, ∵PA=AB•tan60°, ∴PC=2×20×=40(海里), 故选:D. 9.(3.00分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为( ) A.3 B.4 C.2 D.3 【解答】解:取BC的中点G,连接EG, ∵E是AC的中点, ∴EG是△ABC的中位线, ∴EG=AB==4, 设CD=x,则EF=BC=2x, ∴BG=CG=x, ∴EF=2x=DG, ∵EF∥CD, ∴四边形EGDF是平行四边形, ∴DF=EG=4, 故选:B. 10.(3.00分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y= 在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为( ) A.3 B.2 C.6 D.12 【解答】解:∵tan∠AOD==, ∴设AD=3a、OA=4a, 则BC=AD=3a,点D坐标为(4a,3a), ∵CE=2BE, ∴BE=BC=a, ∵AB=4, ∴点E(4+4a,a), ∵反比例函数y=经过点D、E, ∴k=12a2=(4+4a)a, 解得:a=或a=0(舍), 则k=12×=3, 故选:A. 二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分) 11.(3.00分)计算:a4÷a= a3 . 【解答】解:a4÷a=a3, 故答案为:a3 12.(3.00分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是 8 . 【解答】解:在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多, ∴这组数据的众数是8, 故答案为:8. 13.(3.00分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= ﹣2 . 【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根, ∴4+2m+2n=0, ∴n+m=﹣2, 故答案为:﹣2. 14.(3.00分)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为 12 . 【解答】解:∵a+b=4,a﹣b=1, ∴(a+1)2﹣(b﹣1)2 =(a+1+b﹣1)(a+1﹣b+1) =(a+b)(a﹣b+2) =4×(1+2) =12. 故答案是:12. 15.(3.00分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为 80 °. 【解答】解:如图所示,∵DE∥AF, ∴∠BED=∠BFA, 又∵∠CAF=20°,∠C=60°, ∴∠BFA=20°+60°=80°, ∴∠BED=80°, 故答案为:80. 16.(3.00分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为 . 【解答】解:∵2πr1=、2πr2=, ∴r1=、r2=, ∴====, 故答案为:. 17.(3.00分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′= . 【解答】解:在Rt△ABC中,由勾股定理得:AC==5, 过C作CM⊥AB′于M,过A作AN⊥CB′于N, ∵根据旋转得出AB′=AB=2,∠B′AB=90°, 即∠CMA=∠MAB=∠B=90°, ∴CM=AB=2,AM=BC=, ∴B′M=2﹣=, 在Rt△B′MC中,由勾股定理得:B′C===5, ∴S△AB′C==, ∴5×AN=2×2, 解得:AN=4, ∴sin∠ACB′==, 故答案为:. 18.(3.00分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为 2 (结果留根号). 【解答】解:连接PM、PN. ∵四边形APCD,四边形PBFE是菱形,∠DAP=60°, ∴∠APC=120°,∠EPB=60°, ∵M,N分别是对角线AC,BE的中点, ∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°, ∴∠MPN=60°+30°=90°, 设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a), ∴MN===, ∴a=3时,MN有最小值,最小值为2, 故答案为2. 三、解答题(每题只有一个正确选项,本题共10小题,共76分) 19.(5.00分)计算:|﹣|+﹣()2. 【解答】解:原式=+3﹣=3 20.(5.00分)解不等式组: 【解答】解:由3x≥x+2,解得x≥1, 由x+4<2(2x﹣1),解得x>2, 所以不等式组的解集为x>2. 21.(6.00分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF. 【解答】证明:∵AB∥DE, ∴∠A=∠D, ∵AF=DC, ∴AC=DF. ∴在△ABC与△DEF中, , ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴BC∥EF. 22.(6.00分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3. (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解). 【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个, ∴指针所指扇形中的数字是奇数的概率为, 故答案为:; (2)列表如下: 1 2 3 1 (1,1) (2,1) (3,1) 2 (1,2) (2,2) (3,2) 3 (1,3) (2,3) (3,3) 由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种, 所以这两个数字之和是3的倍数的概率为=. 23.(8.00分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题: (1)求参加这次调查的学生人数,并补全条形统计图; (2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数; (3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人? 【解答】解:(1), 答:参加这次调查的学生人数是50人; 补全条形统计图如下: (2), 答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°; (3), 答:估计该校选择“足球”项目的学生有96人. 24.(8.00分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元. (1)求每台A型电脑和每台B型打印机的价格分别是多少元? (2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机? 【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元, 根据题意,得:, 解得:, 答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元; (2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台, 根据题意,得:3500(a﹣1)+1200a≤20000, 解得:a≤5, 答:该学校至多能购买5台B型打印机. 25.(8.00分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D. (1)求线段AD的长; (2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式. 【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2, ∵点A位于点B的左侧, ∴A(﹣2,0), ∵直线y=x+m经过点A, ∴﹣2+m=0, 解得,m=2, ∴点D的坐标为(0,2), ∴AD==2; (2)设新抛物线对应的函数表达式为:y=x2+bx+2, y=x2+bx+2=(x+)2+2﹣, 则点C′的坐标为(﹣,2﹣), ∵CC′平行于直线AD,且经过C(0,﹣4), ∴直线CC′的解析式为:y=x﹣4, ∴2﹣=﹣﹣4, 解得,b1=﹣4,b2=6, ∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2. 26.(10.00分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC. (1)求证:CD=CE; (2)若AE=GE,求证:△CEO是等腰直角三角形. 【解答】证明:(1)连接AC, ∵CD是⊙O的切线, ∴OC⊥CD, ∵AD⊥CD, ∴∠DCO=∠D=90°, ∴AD∥OC, ∴∠DAC=∠ACO, ∵OC=OA, ∴∠CAO=∠ACO, ∴∠DAC=∠CAO, ∵CE⊥AB, ∴∠CEA=90°, 在△CDA和△CEA中, ∵, ∴△CDA≌△CEA(AAS), ∴CD=CE; (2)证法一:连接BC, ∵△CDA≌△CEA, ∴∠DCA=∠ECA, ∵CE⊥AG,AE=EG, ∴CA=CG, ∴∠ECA=∠ECG, ∵AB是⊙O的直径, ∴∠ACB=90°, ∵CE⊥AB, ∴∠ACE=∠B, ∵∠B=∠F, ∴∠F=∠ACE=∠DCA=∠ECG, ∵∠D=90°, ∴∠DCF+∠F=90°, ∴∠F=∠DCA=∠ACE=∠ECG=22.5°, ∴∠AOC=2∠F=45°, ∴△CEO是等腰直角三角形; 证法二:设∠F=x,则∠AOC=2∠F=2x, ∵AD∥OC, ∴∠OAF=∠AOC=2x, ∴∠CGA=∠OAF+∠F=3x, ∵CE⊥AG,AE=EG, ∴CA=CG, ∴∠EAC=∠CGA, ∵CE⊥AG,AE=EG, ∴CA=CG, ∴∠EAC=∠CGA, ∴∠DAC=∠EAC=∠CGA=3x, ∵∠DAC+∠EAC+∠OAF=180°, ∴3x+3x+2x=180, x=22.5°, ∴∠AOC=2x=45°, ∴△CEO是等腰直角三角形. 27.(10.00分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′. (1)当AD=3时,= ; (2)设AD=m,请你用含字母m的代数式表示. 问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示. 【解答】解:问题1: (1)∵AB=4,AD=3, ∴BD=4﹣3=1, ∵DE∥BC, ∴, ∴==, ∵DE∥BC, ∴△ADE∽△ABC, ∴==, ∴=,即, 故答案为:; (2)解法一:∵AB=4,AD=m, ∴BD=4﹣m, ∵DE∥BC, ∴==, ∴==, ∵DE∥BC, ∴△ADE∽△ABC, ∴==, ∴===, 即=; 解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH, ∴△ADF∽△ABH, ∴=, ∴===, 即=; 问题2:如图②, 解法一:如图2,分别延长BD、CE交于点O, ∵AD∥BC, ∴△OAD∽△OBC, ∴, ∴OA=AB=4, ∴OB=8, ∵AE=n, ∴OE=4+n, ∵EF∥BC, 由问题1的解法可知:===, ∵==, ∴=, ∴===,即=; 解法二:如图3,连接AC交EF于M, ∵AD∥BC,且AD=BC, ∴=, ∴S△ADC=, ∴S△ADC=S,S△ABC=, 由问题1的结论可知:=, ∵MF∥AD, ∴△CFM∽△CDA, ∴===, ∴S△CFM=×S, ∴S△EFC=S△EMC+S△CFM=+×S=, ∴=. 28.(10.00分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示, (1)求图②中线段MN所在直线的函数表达式; (2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由. 【解答】解:(1)设线段MN所在直线的函数表达式为y=kx+b, 将M(30,230)、N(100,300)代入y=kx+b, ,解得:, ∴线段MN所在直线的函数表达式为y=x+200. (2)分三种情况考虑: ①考虑FE=FG是否成立,连接EC,如图所示. ∵AE=x,AD=100,GA=x+200, ∴ED=GD=x+100. 又∵CD⊥EG, ∴CE=CG, ∴∠CGE=∠CEG, ∴∠FEG>∠CGE, ∴FE≠FG; ②考虑FG=EG是否成立. ∵四边形ABCD是正方形, ∴BC∥EG, ∴△FBC∽△FEG. 假设FG=EG成立,则FC=BC成立, ∴FC=BC=100. ∵AE=x,GA=x+200, ∴FG=EG=AE+GA=2x+200, ∴CG=FG﹣FC=2x+200﹣100=2x+100. 在Rt△CDG中,CD=100,GD=x+100,CG=2x+100, ∴1002+(x+100)2=(2x+100)2, 解得:x1=﹣100(不合题意,舍去),x2=; ③考虑EF=EG是否成立. 同理,假设EF=EG成立,则FB=BC成立, ∴BE=EF﹣FB=2x+200﹣100=2x+100. 在Rt△ABE中,AE=x,AB=100,BE=2x+100, ∴1002+x2=(2x+100)2, 解得:x1=0(不合题意,舍去),x2=﹣(不合题意,舍去). 综上所述:当x=时,△EFG是一个等腰三角形. 查看更多