- 2021-05-13 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国各地中考数学真题分类解析汇编梯形
梯形 一、选择题 1. (2014•广西贺州,第9题3分)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为( ) A. 12 B. 15 C. 12 D. 15 考点: 等腰梯形的性质. 分析: 过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论. 解答: 解:过点A作AE∥CD,交BC于点E, ∵梯形ABCD是等腰梯形,∠B=60°, ∴AD∥BC, ∴四边形ADCE是平行四边形, ∴∠AEB=∠BCD=60°, ∵CA平分∠BCD, ∴∠ACE=∠BCD=30°, ∵∠AEB是△ACE的外角, ∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC, ∴∠EAC=30°, ∴AE=CE=3, ∴四边形ADEC是菱形, ∵△ABE中,∠B=∠AEB=60°, ∴△ABE是等边三角形, ∴AB=BE=AE=3, ∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15. 故选D. 点评: 本题考查的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键. 2.(2014•襄阳,第10题3分)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于( ) A. 80° B. 90° C. 100° D. 110° 考点: 梯形;等腰三角形的性质;平行四边形的判定与性质. 分析: 根据等边对等角可得∠DEC=80°,再根据平行线的性质可得∠B=∠DEC=80°,∠A=180°﹣80°=100°. 解答: 解:∵DE=DC,∠C=80°, ∴∠DEC=80°, ∵AB∥DE, ∴∠B=∠DEC=80°, ∵AD∥BC, ∴∠A=180°﹣80°=100°, 故选:C. 点评: 此题主要考查了等腰三角形的性质,以及平行线的性质,关键是掌握两直线平行,同位角相等,同旁内角互补. 3.(2014·台湾,第3题3分)如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥BC.若AB=10,BE=8,DE=6,则AD的长度为何?( ) A.8 B.9 C.6 D.6 分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解. 解:∵AE⊥BC, ∴∠AEB=90°, ∵AB=10,BE=8, ∴AE===6, ∵AD∥BC, ∴∠DAE=∠AEB=90°, ∴AD== =6. 故选C. 点评:本题考查了梯形,勾股定理,是基础题,熟记定理并确定出所求的边所在的直角三角形是解题的关键. 4.(2014•浙江宁波,第8题4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为( ) A. 2:3 B. 2:5 C. 4:9 D. : 考点: 相似三角形的判定与性质. 分析: 先求出△CBA∽△ACD,求出=,COS∠ACB•COS∠DAC= ,得出△ABC与△DCA的面积比=. 解答: 解:∵AD∥BC, ∴∠ACB=∠DAC 又∵∠B=∠ACD=90°, ∴△CBA∽△ACD ==, AB=2,DC=3, ∴===, ∴=, ∴COS∠ACB==, COS∠DAC== ∴•=×=, ∴=, ∵△ABC与△DCA的面积比=, ∴△ABC与△DCA的面积比=, 故选:C. 点评: 本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC与△DCA的面积比=. 5. (2014•湘潭,第3题,3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=( )米. (第1题图) A. 7.5 B. 15 C. 22.5 D. 30 考点: 三角形中位线定理 分析: 根据三角形的中位线得出AB=2DE,代入即可求出答案. 解答: 解:∵D、E分别是AC、BC的中点,DE=15米, ∴AB=2DE=30米, 故选D. 点评: 本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半. 6.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( ) A. 4米 B. 6米 C. 12米 D. 24米 考点: 解直角三角形的应用-坡度坡角问题. 分析: 先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长. 解答: 解:在Rt△ABC中,∵=i=,AC=12米, ∴BC=6米, 根据勾股定理得: AB==6米, 故选B. 点评: 此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键. 二.填空题 1. ( 2014•广西玉林市、防城港市,第17题3分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是 7+ . 考点: 直角梯形. 分析: 根据题意得出AB=AD,进而得出BD的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及利用勾股定理求出BC的长,即可得出梯形ABCD的周长. 解答: 解:过点A作AE⊥BD于点E, ∵AD∥BC,∠A=120°, ∴∠ABC=60°,∠ADB=∠DBC, ∵BD平分∠ABC, ∴∠ABD=∠DBC=30°, ∴∠ABE=∠ADE=30°, ∴AB=AD, ∴AE=AD=1, ∴DE=,则BD=2, ∵∠C=90°,∠DBC=30°, ∴DC=BD=, ∴BC===3, ∴梯形ABCD的周长是:AB+AD+CD+BC=2+2++3=7+. 故答案为:7+. 点评: 此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键. 2. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5° . (第1题图) 考点: 等腰梯形的性质;多边形内角与外角 分析: 首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半. 解答: 解:正八边形的内角和是:(8﹣2)×180°=1080°, 则正八边形的内角是:1080÷8=135°, 则∠1=×135°=67.5°. 故答案是:67.5°. 点评: 本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键. 3. (2014•扬州,第14题,3分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为 40 cm3. (第2题图) 考点: 翻折变换(折叠问题);三角形中位线定理 分析: 根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积. 解答: 解:∵DE是△ABC的中位线, ∴DE∥BC,BC=2DE=10cm; 由折叠的性质可得:AF⊥DE, ∴AF⊥BC, ∴S△ABC=BC×AF=×10×8=40cm2. 故答案为:40. 点评: 本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高. 三.解答题 1. (2014年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F. (1)求证:四边形DBFE是平行四边形; (2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么? (第1题图) 考点:三角形的中位线、菱形的判定 分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明; (2)根据邻边相等的平行四边形是菱形证明. (1)证明:∵D、E分别是AB、AC的中点, ∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形; (2)解答:当AB=BC时,四边形DBEF是菱形. 理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线, ∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形. 点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.查看更多