- 2021-05-10 发布 |
- 37.5 KB |
- 40页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学一轮复习 专题练习 压轴题 浙教版
压轴题(1) 班级 姓名 学号 一、选择题 1.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于( ) A.10 B.8 C.6或10 D.8或10 2.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为( ) A.M>N B.M=N C.M<N D.不确定 3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为( ) A.1 B.2 C.3 D.4 4.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为( ) A.6 B.6 C.2 D.3 5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和( ) A.大于0 B.等于0 C.小于0 D.不能确定 6.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( ) A.4个 B.3个 C.2个 D.1个 7.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为( ) A.3 B.4 C.6 D.8 8.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( ) A.1: B.1:2 C.2:3 D.4:9 9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( ) A.671 B.672 C.673 D.674 10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac<b2; ②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3; ③3a+c>0 ④当y>0时,x的取值范围是﹣1≤x<3 ⑤当x<0时,y随x增大而增大 其中结论正确的个数是( ) A.4个 B.3个 C.2个 D.1个 二、填空题 11.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是_____________. 12.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________. 13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号) 14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 . 15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 . 三、解答题 16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E. (1)求证:AC是⊙O的切线; (2)若OB=10,CD=8,求BE的长. 17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的. (1)求乙队单独完成这项工程需要多少天? (2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍? 18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数. (1)求k的取值范围; (2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根; (3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由. 19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F. (1)求点A,点B的坐标; (2)用含t的代数式分别表示EF和AF的长; (3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由. (4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由. 20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4. 问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部. (1)直接写出点D(m,n)所有的特征线; (2)若点D有一条特征线是y=x+1,求此抛物线的解析式; (3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上? 21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点. (1)求抛物线的解析式及点C的坐标; (2)求证:△ABC是直角三角形; (3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由. 22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°. (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系; (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF; (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离. 23.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′. (1)若抛物线过点C、A、A′,求此抛物线的解析式; (2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA ′的面积最大?最大面积是多少?并求出此时M的坐标; (3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q 构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标. 24.如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立. (1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由. (2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H. ①求证:BD⊥CF; ②当AB=2,AD=3时,求线段DH的长. 答案详解 一、选择题 【考点】一元二次方程的解. 【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得. 【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根, ∴ax02+2x0+c=0,即ax02+2x0=﹣c, 则N﹣M=(ax0+1)2﹣(1﹣ac) =a2x02+2ax0+1﹣1+ac =a(ax02+2x0)+ac =﹣ac+ac =0, ∴M=N, 故选:B. 3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为( ) A.1 B.2 C.3 D.4 【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°, 【解答】解:∵DE垂直平分AB, ∴DA=DB, ∴∠B=∠DAB, ∵AD平分∠CAB, ∴∠CAD=∠DAB, ∵∠C=90°, ∴3∠CAD=90°, ∴∠CAD=30°, ∵AD平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD, ∵BC=3, ∴CD=DE=1, 故选A. 4.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为( ) A.6 B.6 C.2 D.3 【考点】翻折变换(折叠问题). 【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE. 【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°, ∴∠CDE=∠BDE=90°, ∵BD=CD,BC=6, ∴BD=ED=3, 即△EDB是等腰直角三角形, ∴BE=BD=×3=3, 故选D. 5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和( ) A.大于0 B.等于0 C.小于0 D.不能确定 【考点】抛物线与x轴的交点. 【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论. 【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2, ∵由二次函数的图象可知x1+x2>0,a>0, ∴﹣>0. 设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+, ∵a>0, ∴>0, ∴a+b>0. 故选C. 6.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF ,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( ) A.4个 B.3个 C.2个 D.1个 【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法 【答案】B. 【解析】∵矩形ABCD中,∴AD∥BC.∴△AEF∽△CAB….......................①正确; ∵△AEF∽△CAB,∴==,∴CF=2AF……………………………②正确; 过点D作DH⊥AC于点H.易证△ABF≌△CDH(AAS).∴AF=CH. ∵EF∥DH,∴= =1.∴AF=FH.∴FH=CH. ∴DH垂直平分CF.∴DF=DC. ……………………………………………③正确; 设EF=1,则BF=2.∵△ABF∽△EAF.∴=.∴AF===. ∴tan∠ABF==.∵∠CAD=∠ABF,∴tan∠CAD=tan∠ABF=.…………④错误. 故选择B. 7.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为( ) A.3 B.4 C.6 D.8 【分析】先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C的坐标,点C的横纵坐标之积即为k值. 【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D, ∵tan∠BAO=2, ∴=2, ∵S△ABO=•AO•BO=4, ∴AO=2,BO=4, ∵△ABO≌△A′O′B, ∴AO=A′0′=2,BO=BO′=4, ∵点C为斜边A′B的中点,CD⊥BO′, ∴CD=A′0′=1,BD=BO′=2, ∴x=BO﹣CD=4﹣1=3,y=BD=2, ∴k=x•y=3•2=6. 故选C.. 8.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( ) A.1: B.1:2 C.2:3 D.4:9 【考点】正方形的性质. 【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案. 【解答】解:设小正方形的边长为x,根据图形可得: ∵=, ∴=, ∴=, ∴S1=S正方形ABCD, ∴S1=x2, ∵=, ∴=, ∴S2=S正方形ABCD, ∴S2=x2, ∴S1:S2=x2: x2=4:9; 故选D. 9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( ) A.671 B.672 C.673 D.674 【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得. 【解答】解:∵第1个图案中白色纸片有4=1+1×3张; 第2个图案中白色纸片有7=1+2×3张; 第3个图案中白色纸片有10=1+3×3张; … ∴第n个图案中白色纸片有1+n×3=3n+1(张), 根据题意得:3n+1=2017, 解得:n=672, 故选:B. 10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac<b2; ②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3; ③3a+c>0 ④当y>0时,x的取值范围是﹣1≤x<3 ⑤当x<0时,y随x增大而增大 其中结论正确的个数是( ) A.4个B.3个C.2个D.1个 【考点】二次函数图象与系数的关系. 【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断. 【解答】解:∵抛物线与x轴有2个交点, ∴b2﹣4ac>0,所以①正确; ∵抛物线的对称轴为直线x=1, 而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0), ∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确; ∵x=﹣=1,即b=﹣2a, 而x=﹣1时,y<0,即a﹣b+c<0, ∴a+2a+c<0,所以③错误; ∵抛物线与x轴的两点坐标为(﹣1,0),(3,0), ∴当﹣1<x<3时,y>0,所以④错误; ∵抛物线的对称轴为直线x=1, ∴当x<1时,y随x增大而增大,所以⑤正确. 故选B. 二、填空题 11.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是_____________. 【知识点】直线射线和线段——垂线段最短、图形的相似——平行线分线段成比例定理、平行四边形——平行四边形的性质、 【答案】4. 【解析】根据“垂线段最短”,可知:当OD⊥BC时,OD最短,DE的值最小. 当OD⊥BC时,OD∥AB.∴==1.∴OD是△ABC的中位线.∴OD=AB=2.∴DE的最小值=2OD=4. 12.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________. 【知识点】一次函数——一次函数与一元一次不等式 【答案】x>3. 【解析】由图象得到直线y=x+b与直线y=kx+6的交点P(3,5),在点P(3,5)的右侧,直线y=x+b落在直线y=kx+6的上方,该部分对应的x的取值范围为x>3,即不等式x+b>kx+6的解集是x>3. 13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号) 【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质. 【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可. 【解答】解:延长EF和BC,交于点G ∵矩形ABCD中,∠B的角平分线BE与AD交于点E, ∴∠ABE=∠AEB=45°, ∴AB=AE=9, ∴直角三角形ABE中,BE==, 又∵∠BED的角平分线EF与DC交于点F, ∴∠BEG=∠DEF ∵AD∥BC ∴∠G=∠DEF ∴∠BEG=∠G ∴BG=BE= 由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC ∴ 设CG=x,DE=2x,则AD=9+2x=BC ∵BG=BC+CG ∴=9+2x+x 解得x= ∴BC=9+2(﹣3)= 故答案为: 14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 (﹣3,0)或(5,0)或(3,0)或(﹣5,0) . 【考点】反比例函数图象上点的坐标特征;等腰三角形的性质. 【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标. 【解答】解: ∵反比例函数y=图象关于原点对称, ∴A、B两点关于O对称, ∴O为AB的中点,且B(﹣1,﹣2), ∴当△PAB为等腰三角形时有PA=AB或PB=AB, 设P点坐标为(x,0), ∵A(1,2),B(﹣1,﹣2), ∴AB==2,PA=,PB=, 当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0); 当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0); 综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0), 故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0). 15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 (﹣,) . 【考点】位似变换;坐标与图形性质;矩形的性质. 【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得Bn的坐标,然后根据矩形的性质即可求得对角线交点的坐标. 【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍, ∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点, ∵OA=2,OC=1. ∵点B的坐标为(﹣2,1), ∴点B1的坐标为(﹣2×,1×), ∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…, ∴B2(﹣2××,1××), ∴Bn(﹣2×,1×), ∵矩形AnOCnBn的对角线交点(﹣2××,1××),即(﹣,), 故答案为:(﹣,). 三、解答题 16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E. (1)求证:AC是⊙O的切线; (2)若OB=10,CD=8,求BE的长. 【考点】切线的判定. 【专题】计算题;与圆有关的位置关系. 【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直径,即可得证; (2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可. 【解答】(1)证明:连接OD, ∵BD为∠ABC平分线, ∴∠1=∠2, ∵OB=OD, ∴∠1=∠3, ∴∠2=∠3, ∴OD∥BC, ∵∠C=90°, ∴∠ODA=90°, 则AC为圆O的切线; (2)解:过O作OG⊥BC, ∴四边形ODCG为矩形, ∴GC=OD=OB=10,OG=CD=8, 在Rt△OBG中,利用勾股定理得:BG=6, ∴BC=BG+GC=6+10=16, ∵OD∥BC, ∴△AOD∽△ABC, ∴=,即=, 解得:OA=, ∴AB=+10=, 连接EF, ∵BF为圆的直径, ∴∠BEF=90°, ∴∠BEF=∠C=90°, ∴EF∥AC, ∴=,即=, 解得:BE=12. 17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的. (1)求乙队单独完成这项工程需要多少天? (2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍? 【考点】一次函数的应用;分式方程的应用. 【分析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论; (2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论. 【解答】解:(1)设乙队单独完成这项工程需要x天, 根据题意得×(30+15)+×15=, 解得:x=450, 经检验x=450是方程的根, 答:乙队单独完成这项工程需要450天; (2)根据题意得(+)×40=, ∴a=60m+60, ∵60>0, ∴a随m的增大增大, ∴当m=1时,最大, ∴=, ∴÷=7.5倍, 答:乙队的最大工作效率是原来的7.5倍 18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数. (1)求k的取值范围; (2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根; (3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由. 【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值; (2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可. (3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断. 【解答】解:(1)∵关于x的分式方程的根为非负数, ∴x≥0且x≠1, 又∵x=≥0,且≠1, ∴解得k≥﹣1且k≠1, 又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0, ∴k≠2, 综上可得:k≥﹣1且k≠1且k≠2; (2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时, ∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0, ∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0, ∴△=9m2﹣4m(m﹣1)=m(5m+4), ∵x1、x2是整数,k、m都是整数, ∵x1+x2=3,x1•x2==1﹣, ∴1﹣为整数, ∴m=1或﹣1, ∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0, x2﹣3x=0, x(x﹣3)=0, x1=0,x2=3; 把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0, x2﹣3x+2=0, (x﹣1)(x﹣2)=0, x1=1,x2=2; (3)|m|≤2不成立,理由是: 由(1)知:k≥﹣1且k≠1且k≠2, ∵k是负整数, ∴k=﹣1, (2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2, ∴x1+x2=﹣==﹣m,x1x2==, x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2, x12+x22═x1x2+k2, (x1+x2)2﹣2x1x2﹣x1x2=k2, (x1+x2)2﹣3x1x2=k2, (﹣m)2﹣3×=(﹣1)2, m2﹣4=1, m2=5, m=±, ∴|m|≤2不成立. 19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F. (1)求点A,点B的坐标; (2)用含t的代数式分别表示EF和AF的长; (3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由. (4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由. 【考点】二次函数综合题. 【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标; (2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长; (3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB相似; (4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式. 【解答】解: (1)在直线y=﹣x+2中, 令y=0可得0=﹣x+2,解得x=2, 令x=0可得y=2, ∴A为(2,0),B为(0,2); (2)由(1)可知OA=2,OB=2, ∴tan∠ABO==, ∴∠ABO=30°, ∵运动时间为t秒, ∴BE=t, ∵EF∥x轴, ∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t, 在Rt△ABO中,OA=2,OB=2, ∴AB=4, ∴AF=4﹣2t; (3)相似.理由如下: 当四边形ADEF为菱形时,则有EF=AF, 即t=4﹣2t,解得t=, ∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=, 如图,过G作GH⊥x轴,交x轴于点H, 则四边形OEGH为矩形, ∴GH=OE=, 又EG∥x轴,抛物线的顶点为A, ∴OA=AH=2, 在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=, 又AF•AB=×4=, ∴AF•AB=AG2,即=,且∠FAG=∠GAB, ∴△AFG∽△AGB; (4)存在, ∵EG∥x轴, ∴∠GFA=∠BAO=60°, 又G点不能在抛物线的对称轴上, ∴∠FGA≠90°, ∴当△AGF为直角三角形时,则有∠FAG=90°, 又∠FGA=30°, ∴FG=2AF, ∵EF=t,EG=4, ∴FG=4﹣t,且AF=4﹣2t, ∴4﹣t=2(4﹣2t), 解得t=, 即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=, ∴E点坐标为(0,), ∵抛物线的顶点为A, ∴可设抛物线解析式为y=a(x﹣2)2, 把E点坐标代入可得=4a,解得a=, ∴抛物线解析式为y=(x﹣2)2, 即y=x2﹣x+. 20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4. 问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部. (1)直接写出点D(m,n)所有的特征线; (2)若点D有一条特征线是y=x+1,求此抛物线的解析式; (3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上? 【分析】(1)根据特征线直接求出点D的特征线; (2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式; (2)分平行于x轴和y轴两种情况,由折叠的性质计算即可. 【解答】解:(1)∵点D(m,n), ∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n; (2)点D有一条特征线是y=x+1, ∴n﹣m=1, ∴n=m+1 ∵抛物线解析式为, ∴y=(x﹣m)2+m+1, ∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n), ∴B(2m,2m), ∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3; ∴D(2,3), ∴抛物线解析式为y=(x﹣2)2+3 (3)如图,当点A′在平行于y轴的D点的特征线时, 根据题意可得,D(2,3), ∴OA′=OA=4,OM=2, ∴∠A′OM=60°, ∴∠A′OP=∠AOP=30°, ∴MN==, ∴抛物线需要向下平移的距离=3﹣=. 乳头,当点A′在平行于x轴的D点的特征线时, ∵顶点落在OP上, ∴A′与D重合, ∴A′(2,3), 设P(4,c)(c>0), 由折叠有,PD=PA, ∴=c, ∴c=, ∴P(4,) ∴直线OP解析式为y=, ∴N(2,), ∴抛物线需要向下平移的距离=3﹣=, 即:抛物线向下平移或距离,其顶点落在OP上. 21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点. (1)求抛物线的解析式及点C的坐标; (2)求证:△ABC是直角三角形; (3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由. 【考点】二次函数综合题. 【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标; (2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论; (3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标. 【解答】解: (1)∵顶点坐标为(1,1), ∴设抛物线解析式为y=a(x﹣1)2+1, 又抛物线过原点, ∴0=a(0﹣1)2+1,解得a=﹣1, ∴抛物线解析式为y=﹣(x﹣1)2+1, 即y=﹣x2+2x, 联立抛物线和直线解析式可得,解得或, ∴B(2,0),C(﹣1,﹣3); (2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点, 则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3, ∴∠ABO=∠CBO=45°,即∠ABC=90°, ∴△ABC是直角三角形; (3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x), ∴ON=|x|,MN=|﹣x2+2x|, 由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3, ∵MN⊥x轴于点N ∴∠ABC=∠MNO=90°, ∴当△ABC和△MNO相似时有=或=, ①当=时,则有=,即|x||﹣x+2|=|x|, ∵当x=0时M、O、N不能构成三角形, ∴x≠0, ∴|﹣x+2|=,即﹣x+2=±,解得x=或x=, 此时N点坐标为(,0)或(,0); ②当=时,则有=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1, 此时N点坐标为(﹣1,0)或(5,0), 综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0). 22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°. (1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系; (2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF; (3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离. 【考点】四边形综合题. 【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形. (2)欲证明BE=CF,只要证明△BAE≌△CAF即可. (3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题. 【解答】(1)解:结论AE=EF=AF. 理由:如图1中,连接AC, ∵四边形ABCD是菱形,∠B=60°, ∴AB=BC=CD=AD,∠B=∠D=60°, ∴△ABC,△ADC是等边三角形, ∴∠BAC=∠DAC=60° ∵BE=EC, ∴∠BAE=∠CAE=30°,AE⊥BC, ∵∠EAF=60°, ∴∠CAF=∠DAF=30°, ∴AF⊥CD, ∴AE=AF(菱形的高相等), ∴△AEF是等边三角形, ∴AE=EF=AF. (2)证明:如图2中,∵∠BAC=∠EAF=60°, ∴∠BAE=∠CAE, 在△BAE和△CAF中, , ∴△BAE≌△CAF, ∴BE=CF. (3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H, ∵∠EAB=15°,∠ABC=60°, ∴∠AEB=45°, 在RT△AGB中,∵∠ABC=60°AB=4, ∴BG=2,AG=2, 在RT△AEG中,∵∠AEG=∠EAG=45°, ∴AG=GE=2, ∴EB=EG﹣BG=2﹣2, ∵△AEB≌△AFC, ∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°, ∵∠EAF=60°,AE=AF, ∴△AEF是等边三角形, ∴∠AEF=∠AFE=60° ∵∠AEB=45°,∠AEF=60°, ∴∠CEF=∠AEF﹣∠AEB=15°, 在RT△EFH中,∠CEF=15°, ∴∠EFH=75°, ∵∠AFE=60°, ∴∠AFH=∠EFH﹣∠AFE=15°, ∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°, 在RT△CHF中,∵∠CFH=30°,CF=2﹣2, ∴FH=CF•cos30°=(2﹣2)•=3﹣. ∴点F到BC的距离为3﹣. 23.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′. (1)若抛物线过点C、A、A′,求此抛物线的解析式; (2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标; (3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q 构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标. 【知识点】 平行四边形——平行四边形的性质、旋转——旋转的性质、二次函数——确定二次函数的表达式(待定系数法)、函数与几何动态——运动产生的面积问题及运动产生的特殊四边形问题、分类讨论思想、实际问题与数学建模——函数模型 【思路分析】(1)先由OA′=OA得到点A′的坐标,再用点C、A、A′的坐标即可求此抛物线的解析式;(2)连接AA′, 过点M 作MN⊥x轴,交AA′于点N,把△AMA′分割为△AMN和△A′MN, △AMA′的面积=△AMA′的面积+△AMN的面积=OA′•MN,设点M的横坐标为x,借助抛物线的解析式和AA′的解析式,建立MN的长关于x的函数关系式,再据此建立△AMA′的面积关于x的二次函数关系式,再求△AMA′面积的最大值以及此时M的坐标;(3)在P、N、B、Q 这四个点中,B、Q 这两个点是固定点,因此可以考虑将BQ作为边、将BQ作为对角线分别构造符合题意的图形,再求解. 【解答】解:(1)∵YABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,点A的坐标是(0,4),∴点A′的坐标为(4,0),点B的坐标为(1,4). ∵抛物线过点C,A,A′,设抛物线的函数解析式为y=ax2+bx+c(a≠0),可得: . 解得:.∴抛物线的函数解析式为y=-x2+3x+4. (2)连接AA′,设直线AA′的函数解析式为y=kx+b,可得 .解得:. ∴直线AA'的函数解析式是y=-x+4. 设M(x,-x2+3x+4), S△AMA′=×4×[-x2+3x+4一(一x+4)]=一2x2+8x=一2(x-2)2+8. ∴x=2时,△AMA′的面积最大S△AMA′=8. ∴M(2,6). (3)设P点的坐标为(x,-x2+3x+4),当P、N、B、Q构成平行四边形时, ①当BQ为边时,PN∥BQ且PN=BQ, ∵BQ=4,∴一x2+3x+4=±4. 当一x2+3x+4=4时,x1=0,x2=3,即P1(0,4),P2(3,4); 当一x2+3x+4=一4时,x3=,x4=,即P3(,-4),P4(,-4); ②当BQ为对角线时,PB∥x轴,即P1(0,4),P2(3,4); 当这个平行四边形为矩形时,即Pl(0,4),P2(3,4)时,N1(0,0),N2(3,0). 综上所述,当P1(0,4),P2(3,4),P3(,-4),P4(,-4)时,P、N、B、Q构成平行四边形;当这个平行四边形为矩形时,N1(0,0),N2(3,0). 24.如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立. (1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由. (2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H. ①求证:BD⊥CF; ②当AB=2,AD=3时,求线段DH的长. 【知识点】等腰三角形——等腰三角形的现性质、特殊的平行四边形——正方形的性质、旋转——旋转的特性、全等三角形——全等三角形的判判定和性质、相似三角形——相似三角形的判判定和性质 【思路分析】(1)先用“SAS”证明△CAF≌△BAD,再用全等三角形的性质即可得BD=CF成立;(2)利用△HFN与△AND的内角和以及它们的等角,得到∠NHF=90°,即可得①的结论;(3)连接DF,延长AB,与DF交于点M,利用△BMD∽△FHD求解. 【解答】(l)解:BD=CF成立. 证明:∵AC=AB,∠CAF=∠BAD=θ;AF=AD,△ABD≌△ACF,∴BD=CF. (2)①证明:由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN, 在△HFN与△ADN中,∵∠HFN=∠AND,∠HNF=∠AND,∴∠NHF=∠NAD=90°, ∴HD⊥HF,即BD⊥CF. ②解:如图,连接DF,延长AB,与DF交于点M. 在△MAD中,∵∠MAD=∠MDA=45°,∴∠BMD=90°. 在Rt△BMD与Rt△FHD中,∵∠MDB=∠HDF,∴△BMD∽△FHD. ∴AB=2,AD=3,四边形ADEF是正方形,∴MA=MD==3. ∴MB=3-2=1,DB==. ∵=.∴=. ∴DH=.查看更多