- 2021-05-10 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
新课标中考复习专题方程组与不等式组要点
中考复习专题 -------方程(组)与不等式(组) 班级 姓名 第1课时 一元一次方程复习 一、考点分析 1. 判断一个方程是否是一元一次方程要抓住三点:⑴方程是整式方程;⑵化简后方程中只含有一个未知数;⑶经整理后方程中未知数的次数是1. 2. 方程的基本变形: ①方程两边都加上或减去同一个数或整式,方程的解不变; ②方程两边都乘以或除以同一个不等于零的数,方程的解不变. 二、一些固定模型中的等量关系: ①数字问题:表示一个三位数,则有 ②行程问题:甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程 甲走的时间=乙走的时间; 甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间的距离 ③工程问题:各部分工作量之和 = 总工作量; ④储蓄问题:本息和=本金+利息 ⑤商品销售问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价或商品售价=商品成本价×(1+利润率) 三、典型例题 例1. 已知方程2xm-3+3x=5是一元一次方程,则m= . 例2. 已知是方程ax2-(2a-3)x+5=0的解,求a的值. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 例4 解方程 例5. 参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,保险公司制度的报销细则如下表,某人今年住院治疗后得到保险公司报销的金额是1260元,那么此人的实际医疗费是( ) 住院医疗费(元) 报销率(%) 不超过500的部分 0 超过500~1000的部分 60 超过1000~3000的部分 80 …… … A. 2600元 B. 2200元 C. 2575元 D. 2525元 例6. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为__________立方米. 例7. 足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分,请问: ⑴前8场比赛中,这支球队共胜了多少场? ⑵这支球队打满14场比赛,最高能得多少分? ⑶通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标? 例8. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________. 四、习题精炼: 1. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A、28 B、33 C、45 D、57 2. 下列各方程中,是一元一次方程的是( ) A、3x+2y=5 B、y2-6y+5=0 C、 D、3x-2=4x-7 3. 已知y=1是方程2-的解,则关于x的方程m(x+4)=m(2x+4)的解是( ) A、x=1 B、x=-1 C、x=0 D、方程无解 4. 某种商品的进价为1200元,标价为1750元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于﹪,则至多可打( ) A、6折 B、7折 C、8折 D、9折 5 母亲26岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的3倍. 此时母亲的年龄为( ) A、39岁 B、42岁 C、45岁 D、48岁 6. 欢欢的生日在8月份.在今年的8月份日历上,欢欢生日那天的上、下、左、右4个日期的和为76,那么欢欢的生日是该月的 号. 7. 一家商店将某型号彩电先按原售价提高40﹪,然后在广告中写上“大酬宾,八折优惠”. 经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款. 求每台彩电的原价格. 第2课时 一元一次不等式和不等式组 一、复习要点: 1、了解一元一次不等式(组)的有关概念,掌握不等式的性质; 2、会用数轴表示不等式(组)的解集,会求特殊解; 3、熟悉一元一次不等式(组)的解法; 4、能根据具体问题中的不相等关系列出一元一次不等式(组)解决实际问题. 二、精选例解 【例1】(2010·宁德)解不等式,并把它的解集在数轴上表示出来. 【变式训练】1、解不等式 【变式训练】2、解不等式组 考点二 一元一次不等式组的解法 ① ② 【例2】解不等式组 考点三 一元一次不等式(组)的特殊解 【例3】(2010·威海)求不等式组的整数解. 【变式训练】3、不等式组的整数解有 . 考点四 不等式(组)与方程(组)之间的联系 【例4】已知方程组的解与的和为负数,求的取值范围. 【变式训练】4、若不等式组的解集为,那么 考点五 不等式(组)的应用 【例5】服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元, 该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服, 该店订购这两款运动服,共有哪几种方案? 三、习题精选: 1、不等式的解集在数轴上表示正确的是( ) 2、不等式组的解集为( ) A. B. C. D.无解 3、不等式组的整数解是 . 4、关于的方程的解是负数,则的取值范围是 . 5、一个两位数,十位数字与个位数字的和是6,且这两位数不大于42,则这样的两位数 共有 个. 6 、 一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满。 (1)设有x间宿舍,请写出x应满足的不等式组; (2)可能有多少间宿舍、多少名学生? 7、 火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A、B两种型号的车厢将这批货物运至北京,已知每节A型货厢的运费是0.5万元,每节B节货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢。 (1) 按此要求安排A、B两种货厢的节数,共有哪几种方案?请你设计出来; (1) 请说明哪种方案的运费最少? 8、某校准备在甲、乙两家公司为毕业班学生制作一批纪念册。甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费。 (1)请写出制作纪念册的册数x与甲公司的收费y1 (元)的关系; (2)请写出制作纪念册的册数x与乙公司的收费y2 (元)的关系; (3)如果学校派你去订做纪念册,你会选择哪家公司? 第3课时:二元一次方程组 【复习重点】 1、 解二元一次方程组 2、 列二元一次方程组解应用题。 一、 基本概念 (一) 二元一次方程(组) 1、 下列选项中,是二元一次方程的是:_______________; ①x-y=2;②x+y+z=-1;③ ;④3a-4b=11;⑤2x-3=5;⑥ 2、 下列选项中,是二元一次方程组的是:_______________; ①; ② ; ③ ; ④; ⑤ 二、解方程组 指导思想:解二元一次方程组的关键是利用代入法或加减法消去一个未知数,转化为一元一次方程 (1) (2) 三、典型例题: 例1:甲乙两人相距6km,两人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可追上乙。两人的平均速度各是多少? 例2、木厂有27工人,1个人一天可以加工2张桌子或4张椅子,现在如何安排劳动力,使生产的1张桌子与4把椅子配套? 四、精题练习: 1、若关于x的二元一次方程kx+3y=5有一组解是,则k的值是( ) A. 1 B. -1 C. 0 D. 2 2、二元一次方程x+2y=12在正整数范围内的解有( )组. A. 3 B. 4 C. 5 D. 无数 3、已知方程是二元一次方程,求m,n的值. 4.方程组 中,x与y的和为2,则k= 5.已知+(x-y+3)=0,则(x+y)= 6、若方程组与方程组同解,则m=______,n=_______. 7、如果关于、的方程组无解,那么 。 第4课时:一元二次方程 一、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式: ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x的一元二次方程的是( ) A B C D 变式:当k 时,关于x的方程是一元二次方程。 例2、方程是关于x的一元二次方程,则m的值为 。 针对练习: ★1、方程的一次项系数是 ,常数项是 。 ★2、若方程是关于x的一元一次方程, ⑴求m的值;⑵写出关于x的一元一次方程。 ★★3、若方程是关于x的一元二次方程,则m的取值范围是 。 ★★★4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知的值为2,则的值为 。 例2、关于x的一元二次方程的一个根为0,则a的值为 。 例3、已知关于x的一元二次方程的系数满足,则此方程 必有一根为 。 例4、已知是方程的两个根,是方程的两个根, 则m的值为 。 针对练习: ★1、已知方程的一根是2,则k为 ,另一根是 。 ★2、已知关于x的方程的一个解与方程的解相同。 ⑴求k的值; ⑵方程的另一个解。 ★3、已知m是方程的一个根,则代数式 。 ★★4、已知是的根,则 。 ★★5、方程的一个根为( ) A B 1 C D ★★★6、若 。 考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次 类型一、直接开方法: ※※对于,等形式均适用直接开方法 典型例题: 例1、解方程: =0; 例2、若,则x的值为 。 针对练习:下列方程无解的是( ) A. B. C. D. 类型二、因式分解法: ※方程特点:左边可以分解为两个一次因式的积,右边为“0”, ※方程形式:如, , 典型例题: 例1、的根为( ) A B C D 例2、若,则4x+y的值为 。 变式1: 。 变式2:若,则x+y的值为 。 变式3:若,,则x+y的值为 。 例3、方程的解为( ) A. B. C. D. 针对练习: ★1、下列说法中: ①方程的二根为,,则 ② . ③ ④ ⑤方程可变形为 正确的有( ) A.1个 B.2个 C.3个 D.4个 ★2、以与为根的一元二次方程是() A. B. C. D. ★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: ⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: ★★4、若实数x、y满足,则x+y的值为( ) A、-1或-2 B、-1或2 C、1或-2 D、1或2 5、方程:的解是 。 类型三、配方法 ※在解方程中,多不用配方法;但常利用配方思想求解代数式 的值或极值之类的问题。 典型例题: 例1、 试用配方法说明的值恒大于0。 例2、 已知x、y为实数,求代数式的最小值。 例3、 已知为实数,求的值。 例4、 分解因式: 针对练习: ★★1、试用配方法说明的值恒小于0。 ★★2、已知,则 . ★★★3、若,则t的最大值为 ,最小值为 。 类型四、公式法 ⑴条件: ⑵公式: , 典型例题: 例1、选择适当方法解下列方程: ⑴ ⑵ ⑶ ⑷ ⑸ 例2、在实数范围内分解因式: (1); (2). ⑶ 说明:①对于二次三项式的因式分解,如果在有理数范围内不能分解, 一般情况要用求根公式,这种方法首先令=0,求出两根,再写成 =. ②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去. 类型五、 “降次思想”的应用 ⑴求代数式的值; ⑵解二元二次方程组。 典型例题: 例1、 已知,求代数式的值。 例2、如果,那么代数式的值。 例3、已知是一元二次方程的一根,求的值。 例4、用两种不同的方法解方程组 说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再 消元。但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已 知的问题. 考点四、根的判别式 根的判别式的作用: ①定根的个数; ②求待定系数的值; ③应用于其它。 典型例题: 例1、若关于的方程有两个不相等的实数根,则k的取值范围是 。 例2、关于x的方程有实数根,则m的取值范围是( ) A. B. C. D. 例3、已知关于x的方程 (1)求证:无论k取何值时,方程总有实数根; (2)若等腰ABC的一边长为1,另两边长恰好是方程的两个根,求ABC的周长。 例4、已知二次三项式是一个完全平方式,试求的值. 例5、为何值时,方程组有两个不同的实数解?有两个相同的实数解? 针对练习: ★1、当k 时,关于x的二次三项式是完全平方式。 ★2、当取何值时,多项式是一个完全平方式?这个完全平方式是什么? ★3、已知方程有两个不相等的实数根,则m的值是 . ★★4、为何值时,方程组 (1)有两组相等的实数解,并求此解; (2)有两组不相等的实数解; (3)没有实数解. ★ ★★5、当取何值时,方程的根与均为有理数? 考点五、方程类问题中的“分类讨论” 典型例题: 例1、关于x的方程 ⑴有两个实数根,则m为 , ⑵只有一个根,则m为 。 例1、 不解方程,判断关于x的方程根的情况。 例3、如果关于x的方程及方程均有实数根,问这两方程 是否有相同的根?若有,请求出这相同的根及k的值;若没有,请说明理由。 考点六、应用解答题 ⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题; ⑷“最值”型问题;⑸“图表”类问题 典型例题: 1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席? 2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人? 3、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答: (1)当销售价定为每千克55元时,计算月销售量和月销售利润。 (2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元, 销售单价应定为多少? 4、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。 (1)要使这两个正方形的面积之和等于17cm2,那么这两段铁丝的长度分别为多少? (2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不 能,请说明理由。 (3)两个正方形的面积之和最小为多少? 考点七、根与系数的关系 ⑴前提:对于而言,当满足①、②时, 才能用韦达定理。 ⑵主要内容: ⑶应用:整体代入求值。 典型例题: 例1、已知一个直角三角形的两直角边长恰是方程的两根,则这个直角三 角形的斜边是( ) A. B.3 C.6 D. 例2、已知关于x的方程有两个不相等的实数根, (1)求k的取值范围; (2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不 存在,请说明理由。 例3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错 常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道 原来的方程是什么吗?其正确解应该是多少? 例4、已知,,,求 变式:若,,则的值为 。 例5、已知是方程的两个根,那么 . 针对练习: 1、解方程组 2.已知,,求的值。 3、已知是方程的两实数根,求的值。查看更多