- 2021-05-10 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学专题压轴题内含答案
中考数学专题压轴题 1. 已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F. (1)求证:AC与⊙O相切; (2)当BD=6,sinC=时,求⊙O的半径. 证明:(1)连接OE, ∵AB=BC且D是AC中点,∴BD⊥AC, ∵BE平分∠ABD,∴∠ABE=∠DBE, ∵OB=OE ∴∠OBE=∠OEB, ∴∠OEB=∠DBE,∴OE∥BD, ∵BD⊥AC, ∴OE⊥AC, ∵OE为⊙O半径,∴AC与⊙O相切. (2)解:∵BD=6,sinC=,BD⊥AC, ∴BC=10, ∴AB=BC=10, 设⊙O 的半径为r,则AO=10﹣r, ∵AB=BC, ∴∠C=∠A, ∴sinA=sinC=, ∵AC与⊙O相切于点E, ∴OE⊥AC, ∴sinA===, ∴r=, 答:⊙O的半径是. 2. 如图,AB是⊙O的直径,AC是弦,∠ACD=∠AOC,AD⊥CD于点D.(1)求证:CD是⊙O的切线;(2)若AB=10,AD=2,求AC的长. 解:(1)∵OA=OC, ∴∠OCA=∠OAC, ∵∠AOC+∠OCA+∠OAC=180°, ∴∠AOC+2∠OCA=180°, ∴∠AOC+∠OCA=90°, ∵∠ACD=∠AOC, ∴∠ACD+∠OCA=90°,即∠DCO=90°, 又∵OC是半径, ∴CD是⊙O的切线; …(3分) (2)过点A作AE⊥OC,垂足为E,可得∠AEC=90°, 由(1)得∠DCO=90°, ∵AD⊥CD, ∴∠D=90°, ∴四边形DCEA是矩形,又AD=2, ∴CE=AD=2,…(4分) ∵AB是直径,且AB=10, ∴OA=OC=5, ∴OE=OC﹣CE=5﹣2=3, ∴在Rt△AEO中,OA=5,OE=3, 根据勾股定理得:AE==4,…(5分) ∴在Rt△ACE中,CE=2,AE=4, 根据勾股定理得:AC==2.…(6分) 3. 如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D. (1)求证:AC平分∠BAD; (2)若CD=1,AC=,求⊙O的半径长. 证明:(1)连接OC. ∵OA=OC, ∴∠ACO=∠CAO. ∵CD切⊙O于C, ∴OC⊥CD, 又∵AD⊥CD, ∴AD∥CO, ∴∠DAC=∠ACO, ∴∠DAC=∠CAO, 即AC平分∠BAD; (2)解法一:如图2①,过点O作OE⊥AC于E. 在Rt△ADC中,AD===3, ∵OE⊥AC, ∴AE=AC=. ∵∠CAO=∠DAC,∠AEO=∠ADC=90°, ∴△AEO∽△ADC, ∴,即, ∴AO=,即⊙O的半径为. 解法二:如图2②,连接BC. 在Rt△ADC中,AD===3. ∵AB是⊙O直径,∴∠ACB=90°, ∵∠CAB=∠DAC,∠ACB=∠ADC=90°, ∴△ABC∽△ACD, ∴, 即, ∴AB=, ∴=, 即⊙O的半径为. 4. 如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G. (1)求证:DF⊥AF. (2)求OG的长. 解:(1)连接OD,则OD⊥EF, ∵, ∴∠CAD=∠DAB=30°, ∵AO=DO, ∴∠OAD=∠ADO, ∴∠FAD=∠ADO, ∴AF∥DO, ∴DF⊥AF. (2)在Rt△ABD中,∠BAD=30°,AB=10, ∴BD=5, ∵=, ∴OG垂直平分AD, ∴OG是△ABD的中位线, ∴OG=BD=. 5. 已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M. (1)求证:点P是线段AC的中点; (2)求sin∠PMC的值. 证明:(1)连结OM,如图, ∵直线AC和PM分别与⊙O相切于点A,M, ∴PM=PA,OM⊥MP,BA⊥AC, ∴∠OMP=90°,∠BAC=90°, ∴∠1+∠2=90°,∠B+∠C=90°, 而∠2=∠B, ∴∠1=∠C,∴PC=PM,∴PA=PC, ∴点P是线段AC的中点; (2)解:由(1)∠PMC=∠C, 在Rt△ABC中,AB=3,AC=4, ∴BC==5,∴sin∠C==, 即sin∠PMC=. 6.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F. (1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin∠ADE=,求BF的长. 证明:(1)连接OD,如图, ∵AB为⊙0的直径, ∴∠ADB=90°, ∴AD⊥BC, ∵AB=AC, ∴AD平分BC,即DB=DC, ∵OA=OB, ∴OD为△ABC的中位线, ∴OD∥AC, ∵DE⊥AC, ∴OD⊥DE, ∴EF是⊙0的切线; (2)解:∵∠DAC=∠DAB, ∴∠ADE=∠ABD, 在Rt△ADB中,sin∠ADE=sin∠ABD==,而AB=10, ∴AD=8, 在Rt△ADE中,sin∠ADE==, ∴AE=, ∵OD∥AE, ∴△FDO∽△FEA, ∴=, 即=, ∴BF=. 7.如图,AB是⊙O的直径,∠B=∠CAD. (1)求证:AC是⊙O的切线; (2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值. 解:(1)∵AB是⊙O的直径, ∴∠ADB=∠ADC=90°, ∵∠B=∠CAD,∠C=∠C, ∴△ADC∽△BAC, ∴∠BAC=∠ADC=90°, ∴BA⊥AC, ∴AC是⊙O的切线. (2)∵BD=5,CD=4, ∴BC=9, ∵△ADC∽△BAC(已证), ∴=,即AC2=BC×CD=36, 解得:AC=6, 在Rt△ACD中,AD==2, ∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD, ∴CA=CF=6, ∴DF=CA﹣CD=2, 在Rt△AFD中,AF==2. 8. 如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC. (1)求证:BC是⊙O的切线; (2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积. 证明:(1)∵AB为⊙O直径, ∴∠ADB=90°, ∴∠BAC+∠ABD=90°, ∵∠DBC=∠BAC, ∴∠DBC+∠ABD=90°, ∴AB⊥BC, ∵AB为直径, ∴BC是⊙O切线; (2)解:连接OD,过O作OM⊥BD于M, ∵∠BAC=30°, ∴∠BOD=2∠A=60°, ∵OB=OD, ∴△OBD是等边三角形, ∴OB=BD=OD=2, ∴BM=DM=1, 由勾股定理得:OM=, ∴阴影部分的面积S=S扇形DOB﹣S△DOB=﹣×2×=π﹣. 9. 如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P. (1)求证:DE是⊙O的切线; (2)求tan∠ABE的值; (3)若OA=2,求线段AP的长. 证明:(1)连接AD、OD,如图, ∵AB是⊙O的直径,∴∠ADB=90°, ∵AB=AC,∴AD垂直平分BC,即DC=DB, ∴OD为△BAC的中位线,∴OD∥AC, 而DE⊥AC, ∴OD⊥DE,∴DE是⊙O的切线; (2)解:∵OD⊥DE,DE⊥AC, ∴四边形OAED为矩形, 而OD=OA, ∴四边形OAED为正方形,∴AE=AO, ∴tan∠ABE==; (3)解:∵AB是⊙O的直径, ∴∠AFB=90°, ∴∠ABF+∠FAB=90°, 而∠EAP+∠FAB=90°, ∴∠EAP=∠ABF, ∴tan∠EAP=tan∠ABE=, 在Rt△EAP中,AE=2, ∵tan∠EAP==, ∴EP=1, ∴AP==. 10.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE. (1)求证:DE是半圆⊙O的切线. (2)若∠BAC=30°,DE=2,求AD的长. 证明:(1)连接OD,OE, ∵AB为圆O的直径, ∴∠ADB=∠BDC=90°, 在Rt△BDC中,E为斜边BC的中点, ∴DE=BE, 在△OBE和△ODE中, , ∴△OBE≌△ODE(SSS), ∴∠ODE=∠ABC=90°, 则DE为圆O的切线; (2)在Rt△ABC中,∠BAC=30°, ∴BC=AC, ∵BC=2DE=4, ∴AC=8, 又∵∠C=60°,DE=DC, ∴△DEC为等边三角形,即DC=DE=2, 则AD=AC﹣DC=6. 11. 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF. (1)BD与CD有什么数量关系,并说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由. 解:(1)BD=CD. 理由如下:∵AF∥BC, ∴∠AFE=∠DCE, ∵E是AD的中点, ∴AE=DE, 在△AEF和△DEC中,, ∴△AEF≌△DEC(AAS), ∴AF=CD, ∵AF=BD, ∴BD=CD; (2)当△ABC满足:AB=AC时,四边形AFBD是矩形. 理由如下:∵AF∥BD,AF=BD,[来源:学*科*网Z*X*X*K] ∴四边形AFBD是平行四边形, ∵AB=AC,BD=CD, ∴∠ADB=90°, ∴▱AFBD是矩形. 12. (一定要看会)已知抛物线的方程C1: (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧. (1)若抛物线C1过点M(2, 2),求实数m的值; (2)在(1)的条件下,求△BCE的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标; (4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由. 解:(1)将M(2, 2)代入,得.解得m=4. (2)当m=4时,.所以C(4, 0),E(0, 2). 所以S△BCE=. (3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小. 设对称轴与x轴的交点为P,那么. 因此.解得.所以点H的坐标为. (4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′. 由于∠BCE=∠FBC,所以当,即时,△BCE∽△FBC. 设点F的坐标为,由,得. 解得x=m+2.所以F′(m+2, 0). 由,得.所以. 由,得. 整理,得0=16.此方程无解. 图2 图3 图4 ②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′, 由于∠EBC=∠CBF,所以,即时,△BCE∽△BFC. 在Rt△BFF′中,由FF′=BF′,得. 解得x=2m.所以F′.所以BF′=2m+2,. 由,得.解得. 综合①、②,符合题意的m为. 13.已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积; (3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为) 解:(1)由已知得:解得 c=3,b=2 ∴抛物线的线的解析式为 (2)由顶点坐标公式得顶点坐标为(1,4) 所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F 所以四边形ABDE的面积= = = =9 (3)相似 如图,BD= BE= DE= 所以, 即: ,所以是直角三角形 所以,且, 所以. 14.如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点. (1)求过三点抛物线的解析式并求出顶点的坐标; (2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由; (3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由. A O x y B F C H M G A O x y B F C 解:过点作的垂线交轴于点,则点为点关于直线的对称点.连接交于点,则点即为所求. 11分 过点作轴于点,则,. , 同方法一可求得. 在中,,,可求得, 为线段的垂直平分线,可证得为等边三角形, 垂直平分. 即点为点关于的对称点. 12分 设直线的解析式为,由题意得 解得 13分 解得 在直线上存在点,使得的周长最小,此时. 15. 已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点. (1)写出直线的解析式. (2)求的面积. (3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少? x y A B C E M D P N O 解:(1)在中,令 , , 1分 又点在上 的解析式为 2分 (2)由,得 4分 , , 5分 6分 (3)过点作于点 7分 8分 由直线可得: 在中,,,则 , 9分 10分 11分 此抛物线开口向下,当时, 当点运动2秒时,的面积达到最大,最大为. 16. 已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D. (1)求该抛物线的解析式; (2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积; (3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为) 解:( 1)由已知得:解得 c=3,b=2 ∴抛物线的线的解析式为 (2)由顶点坐标公式得顶点坐标为(1,4) 所以对称轴为x=1,A,E关于x=1对称,所以E(3,0) 设对称轴与x轴的交点为F 所以四边形ABDE的面积= = = =9 (3)相似 如图,BD= BE= DE= 所以, 即: ,所以是直角三角形 所以,且, 所以. 17. (2014.临夏州)如图14(1),抛物线与x轴交于A、B两点,与y轴交于点C(0,).[图14(2)、图14(3)为解答备用图] (1) ,点A的坐标为 ,点B的坐标为 ; (2)设抛物线的顶点为M,求四边形ABMC的面积; (3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由。 图14(2) 解:(1), 1分 A(-1,0), 2分 B(3,0). 3分 (2)如图14(1),抛物线的顶点为M(1,-4),连结OM. 4分 则 △AOC的面积=,△MOC的面积=, △MOB的面积=6, 6分 ∴ 四边形 ABMC的面积 =△AOC的面积+△MOC的面积+△MOB的面积=9. 7分 说明:也可过点M作抛物线的对称轴,将四边形ABMC的面 积转化为求1个梯形与2个直角三角形面积的和. (3)如图14(2),设D(m,),连结OD. 则 0<m<3, <0. 且 △AOC的面积=,△DOC的面积=, △DOB的面积=-(), 9分 ∴ 四边形 ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积 = =. 11分 ∴ 存在点D,使四边形ABDC的面积最大为. 12分 18. (2014.白银)如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点. (1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标; (3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由. 解:①∵函数的图象与x轴相交于O, ∴0=k+1,∴k=﹣1, ∴y=x2﹣3x, ②假设存在点B,过点B做BD⊥x轴于点D, ∵△AOB的面积等于6,∴AO•BD=6, 当0=x2﹣3x, x(x﹣3)=0,解得:x=0或3, ∴AO=3,∴BD=4 即4=x2﹣3x, 解得:x=4或x=﹣1(舍去). 又∵顶点坐标为:( 1.5,﹣2.25). ∵2.25<4,∴x轴下方不存在B点, ∴点B的坐标为:(4,4); ③∵点B的坐标为:(4,4), ∴∠BOD=45°,BO==4, 当∠POB=90°, ∴∠POD=45°, 设P点横坐标为:﹣x,则纵坐标为:x2﹣3x, 即﹣x=x2﹣3x, 解得x=2 或x=0, ∴在抛物线上仅存在一点P (2,﹣2). ∴OP==2, 使∠POB=90°, ∴△POB的面积为: PO•BO=×4×2=8. 19. 如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上. (1)求∠ACB的大小; (2)写出A,B两点的坐标; (3)试确定此抛物线的解析式; (4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由. 解:(1)作CH⊥x轴,H为垂足, ∵CH=1,半径CB=2, ∵∠BCH=60°, ∴∠ACB=120°. (2)∵CH=1,半径CB=2 ∴HB=,故A(1﹣,0), B(1+,0). (3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3) 设抛物线解析式y=a(x﹣1)2+3, 把点B(1+,0)代入上式,解得a=﹣1; ∴y=﹣x2+2x+2. (4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ∴PC∥OD且PC=OD. ∵PC∥y轴, ∴点D在y轴上. 又∵PC=2, ∴OD=2,即D(0,2). 又D(0,2)满足y=﹣x2+2x+2, ∴点D在抛物线上 所以存在D(0,2)使线段OP与CD互相平分. 20. 已知二次函数y=﹣x2+(k+1)x﹣k的图象经过一次函数y=﹣x+4的图象与x轴的交点A.(如图) (1)求二次函数的解析式; (2)求一次函数与二次函数图象的另一个交点B的坐标; (3)若二次函数图象与y轴交于点D,平行于y轴的直线l将四边形ABCD的面积分成1:2的两部分,则直线l截四边形ABCD所得的线段的长是多少?(直接写出结果) 解:(1)由y=﹣x+4,得A(4,0), 又二次函数图象经过点A, 则0=﹣16+4(k+1)﹣k, 解得k=4, 所以二次函数解析式为y=﹣x2+5x﹣4. (2)由, 解得,, 所以点B的坐标为(2,2). (3)令y=0代入二次函数得x=1或x=4, 则C点坐标为(1,0) 令x=0代入2此函数得y=﹣4,则D点坐标为(0,﹣4) ∴四边形面积为:×(4﹣1)×2+×(4﹣1)×4=9, ①若直线在点B的左侧, 令平行于y轴的直线交BC于E,交CA于F,交AD于G, 求得BC的函数为y=2x﹣2 则=, 同理求得AD的函数为y=x﹣4,∴AF=FG, 设CF=a>0, 则EF=2a,AF=3﹣a,FG=3﹣a, ∴S△EFC+S四边形FCDG=S△EFC+S梯形OFGD﹣S△OCD=a•2a+(3﹣a+4)•(a+1)﹣×1×4=, 解得:a=<0(舍去); ②若直线在点B的左侧, 令平行于y轴的直线交AB于E,交CA于F,交AD于G, 求得AB的函数为y=﹣x+4, 则EF=FA, 同理求得AD的函数为y=x﹣4, ∴AF=FG, 设AF=a>0, 则EF=a,AF=a,FG=a,∴S△EFC+S△AFG=a•a+a•a=, 解得:a=,∴EG=3. 故线段长为3. 21. 如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点. (1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标; (3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由. 解:①∵函数的图象与x轴相交于O, ∴0=k+1,∴k=﹣1,∴y=x2﹣3x, ②假设存在点B,过点B做BD⊥x轴于点D, ∵△AOB的面积等于6,∴AO•BD=6, 当0=x2﹣3x, x(x﹣3)=0, 解得:x=0或3,∴AO=3,∴BD=4 即4=x2﹣3x, 解得:x=4或x=﹣1(舍去). 又∵顶点坐标为:( 1.5,﹣2.25). ∵2.25<4,∴x轴下方不存在B点, ∴点B的坐标为:(4,4); ③∵点B的坐标为:(4,4), ∴∠BOD=45°,BO==4, 当∠POB=90°,∴∠POD=45°, 设P点横坐标为:﹣x,则纵坐标为:x2﹣3x, 即﹣x=x2﹣3x, 解得x=2 或x=0, ∴在抛物线上仅存在一点P (2,﹣2).∴OP==2, 使∠POB=90°, ∴△POB的面积为: PO•BO=×4×2=8. 22. 如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3. (1)求点M、A、B坐标; (2)联结AB、AM、BM,求∠ABM的正切值; (3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标. 解:(1)抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3, 顶点M(1,﹣3), 令x=0,则y=(0﹣1)2﹣3=﹣2, 点A(0,﹣2), x=3时,y=(3﹣1)2﹣3=4﹣3=1, 点B(3,1); (2)过点B作BE⊥AO于E,过点M作MF⊥AO于M, ∵EB=EA=3,∴∠EAB=∠EBA=45°, 同理可求∠FAM=∠FMA=45°, ∴△ABE∽△AMF,∴==, 又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==; (3)过点P作PH⊥x轴于H, ∵y=(x﹣1)2﹣3=x2﹣2x﹣2, ∴设点P(x,x2﹣2x﹣2), ①点P在x轴的上方时,=, 整理得,3x2﹣7x﹣6=0, 解得x1=﹣(舍去),x2=3, ∴点P的坐标为(3,1); ②点P在x轴下方时,=, 整理得,3x2﹣5x﹣6=0, 解得x1=(舍去),x2=, x=时,x2﹣2x﹣2=﹣×=﹣, ∴点P的坐标为(,﹣), 综上所述,点P的坐标为(3,1)或(,﹣). 23.点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置. (1)求点B的坐标; (2)求经过A、O、B的抛物线的解析式; (3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由. 解:(1)如图2,过点B作BC⊥y轴,垂足为C. 在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,. 所以点B的坐标为. (2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4), 代入点B,.解得. 所以抛物线的解析式为. (3)抛物线的对称轴是直线x=2,设点P的坐标为(2, y). ①当OP=OB=4时,OP2=16.所以4+y2=16.解得. 当P在时,B、O、P三点共线(如图2). ②当BP=BO=4时,BP2=16.所以.解得. ③当PB=PO时,PB2=PO2.所以.解得. 综合①、②、③,点P的坐标为,如图2所示. 图2 图3 24. 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点. (1)求抛物线的解析式; (2)求tan∠ABO的值; (3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标. 图1 解:(1)将A(0, 1)、B(4, 3)分别代入y=-x2+bx+c,得 解得,c=1. 所以抛物线的解析式是. (2)在Rt△BOC中,OC=4,BC=3,所以OB=5. 如图2,过点A作AH⊥OB,垂足为H. 在Rt△AOH中,OA=1,, 所以. 所以,. 在Rt△ABH中,. (3)直线AB的解析式为. 设点M的坐标为,点N的坐标为, 那么. 当四边形MNCB是平行四边形时,MN=BC=3. 解方程-x2+4x=3,得x=1或x=3. 因为x=3在对称轴的右侧(如图4),所以符合题意的点M的坐标为(如图3). 图3 图4查看更多