- 2021-05-10 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
江西省中考数学试卷重排word版 含答案
江西省2017年中等学校招生考试 数学试题卷 一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.-6的相反数是( ) A. B. C. 6 D.-6 2. 在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000,将13000用科学记数法表示应为( ) A. B. C. D. 3.下列图形中,是轴对称图形的是( ) A. B. C. D. 4. 下列运算正确的是( ) A. B. C. D. 5.已知一元二次方程的两个根为,下列结论正确的是( ) A. B. C. 都是有理数 D.都是正数 6. 如图,任意四边形中,分别是上的点,对于四边形的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( ) A.当是各边中点,且时,四边形为菱形 B.当是各边中点,且时,四边形为矩形 C. 当不是各边中点时,四边形可以为平行四边形 D.当不是各边中点时,四边形不可能为菱形 二、填空题(本大题共6小题,每小题3分,满分18分,将答案填在答题纸上) 7. 函数中,自变量的取值范围是___________. 8. 如图1是一把园林剪刀,把它抽象为图2,其中,若剪刀张开的角为30°,则_________度. 9. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为___________. 第9题图 10.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是_____________. 11.已知一组从小到大排列的数据:2,5,,, ,11的平均数与中位数都是7,则这组数据的众数是______________. 12.已知点,连接得到矩形,点的边上,将边沿折叠,点的对应边为,若点到矩形较长两对边的距离之比为1:3,则点的坐标为____________. 三、解答题 (本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.) 13.(1)计算:; (2)如图,正方形中,点分别在上,且. 求证:. 14.解不等式组:,并把解集在数轴上表示出来. -3 -4 -1 0 1 2 3 -2 4 15.端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别. (1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少? (2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率. 16.如图,已知正七边形,请仅用无刻度的直尺,分别按下列要求画图. (1)在图1中,画出一个以为边的平行四边形; (2)在图2中,画出一个以为边的菱形. 17. 如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为20°,而当手指接触键盘时,肘部形成的“手肘角”约为100°.图2是其侧面简化示意图,其中视线水平,且与屏幕垂直. (1)若屏幕上下宽,科学使用电脑时,求眼睛与屏幕的最短距离的长; (2)若肩膀到水平地面的距离,上臂,下臂水平放置在键盘上,其到地面的距离.请判断此时是否符合科学要求的100°? (参考数据:,所有结果精确到个位) 四、(本大题共3小题,每小题8分,共24分). 18. 为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 出行方式 共享单车 步行 公交车 的士 私家车 根据以上信息,回答下列问题: (1)参与本次问卷调查的市民共有___________人,其中选择类的人数有_____________人; (2)在扇形统计图中,求类对应扇形圆心角的度数,并补全条形统计图; (3)该市约有12万人出行,若将这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数. 19.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为,双层部分的长度为,经测量,得到如下数据: 单层部分的长度( ) … 4 6 8 10 … 150 双层部分的长度 … 73 72 71 … (1)根据表中数据的规律,完成以下表格,并直接写出关于的函数解析式; (2)根据小敏的身高和习惯,挎带的长度为时,背起来正合适,请求出此时单层部分的长度; (3)设挎带的长度为,求的取值范围. 20. 如图,直线与双曲线相交于点.已知点,连接,将沿方向平移,使点移动到点,得到.过点作轴交双曲线于点. (1)求与的值; (2)求直线的表达式; (3)直接写出线段扫过的面积. 五、(本大题共2小题,每小题9分,共18分). 21.如图1,的直径是弦上一动点(与点不重合),,过点作交于点. (1)如图2,当时,求的长; (2)如图3,当时,延长至点,使,连接. ①求证:是的切线; ②求的长. 22.已知抛物线. (1)当时,求抛物线与轴的交点坐标及对称轴; (2)①试说明无论为何值,抛物线一定经过两个定点,并求出这两个定点的坐标; ②将抛物线沿这两个定点所在直线翻折,得到抛物线,直接写出的表达式; (3)若(2)中抛物线的顶点到轴的距离为2,求的值. 六、(本大题共12分) 23. 我们定义:如图1,在看,把点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,我们称是的“旋补三角形”, 边上的中线叫做的“旋补中线”,点叫做“旋补中心”. 特例感知: (1)在图2,图3中,是的“旋补三角形”, 是的“旋补中心”. ①如图2,当为等边三角形时,与的数量关系为_____________; ②如图3,当时,则长为_________________. 猜想论证: (2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明. 拓展应用 (3)如图4,在四边形,,.在四边形内部是否存在点,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由. 参考答案 1.C 2.B 3.C 4.A 5.D 6.D 7. 8.75° 9. -3 10.8 11. 5 12. 13. 14. 15. 16. 解答: 17. 18. 800人,240人,, 19. 20. 21. 22. 23. ,4, 解(2)猜想 解题过程:如图,将三角形 绕点D逆时针旋转,使DC与 重合,证明 查看更多