中考数学复习与圆有关的最值取值范围问题专练无答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学复习与圆有关的最值取值范围问题专练无答案

与圆有关的最值(取值范围)问题 解题策略 ‎1.直观感觉,画出图形;‎ ‎2.特殊位置,比较结果;‎ ‎ 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.‎ 例一、不等式、配方法 ‎1.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4),则当x= 时,PD•CD的值最大,且最大值是为 .‎ ‎2.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为( ).‎ A.4 B. C. D. 2‎ ‎3.在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与轴相交于点A,与轴相交于点B,线段AB长度的最小值是 .‎ 例二、相切的应用(有公共点、最大或最小夹角)‎ ‎1.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB边上一点,过点D作CD的垂线交直线BC于点E,则线段CE长度的最小值是 .‎ ‎2.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,以AC上的一点O为圆心OA为半径作⊙O,若⊙O与边BC始终有交点(包括B、C两点),则线段AO的取值范围是 .‎ ‎3.如图,射线PQ∥射线MN,PM⊥MN,A为PM的中点,O为射线PQ上的一个动点,AC⊥AB交MN于点C,当以O为圆心,以OB为半径的圆与线段PM有公共点时(包括P、M两点),则线段OP长度的最小值为 .‎ 例三、其他几何知识的运用 如图所示,AC⊥AB,AB=6,AC=4,点D是以AB为直径的半圆O上一动点,DE⊥CD交直线AB于点E,设∠DAB=,(0°<<90°).若要使点E在线段OA上(包括O、A两点),则的取值范围为 .‎ 课堂练习:‎ ‎1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .‎ ‎2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒cm的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.‎ ‎(1)若点G在线段BC上,则t的取值范围是 ;‎ ‎(2)若点G在线段BC的延长线上,则t的取值范围是 .‎ ‎3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q为⊙N上的任意一点,直线PQ与连心线所夹的锐角度数为,当P、Q在两圆上任意运动时,的最大值为( ).‎ ‎(A) (B) (C) (D)‎ ‎4.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).‎ ‎ (A)4 (B) (C) (D)‎ ‎5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是( ).‎ A. B. C.5 D.‎ ‎6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为 .‎ ‎7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).‎ ‎ A.2 B.1 C. D.‎ ‎8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).‎ ‎ A.3 B. C. D.4‎ ‎9.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ切⊙O于点Q,则切线长PQ长度的最小值为( ).‎ ‎ A. B. C. 3 D.4‎ ‎10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .‎ ‎11.在直角坐标系中,点A的坐标为(3,0),点P()是第一象限内一点,且AB=2,则的范围为 .‎ ‎12.在坐标系中,点A的坐标为(3,0),点B是y轴右侧一点,且AB=2,点C上直线y=x+1上一动点,且CB⊥AB于点B,则,则的取值范围是 .‎ ‎ ‎ ‎13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .‎
查看更多

相关文章

您可能关注的文档