- 2021-05-10 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学多边形与平行四边形专题目训练
2013年中考数学专题复习第二十讲 多边形与平行四边形 【基础知识回顾】 一、 多边形: 1、定义:在平面内,由若干条不在同一直线上的线段 相连组成的 图形叫做多边形,各边相等 也相等的多边形叫做正多边形 2、多边形的内外角和: n(n≥3)的内角和事 外角和是 正几边形的每个外角的度数是 ,每个内角的度数是 3、多边形的对角线: 多边形的对角线是连接多边形 的两个顶点的线段,从几边形的一个顶点出发有 条对角线,将多边形分成 个三角形,一个几边形共有 条对边线 【名师提醒:1、三角形是边数最少的多边形 2、所有的正多边形都是轴对称图形,正n边形共有 条对称轴,边数为 数的正多边形也是中心对称图形】 二、平面图形的密铺: 1、定义:用 、 完全相同的一种或几种平面图形进行拼接,彼此之间 地铺成一起,这就是平面图形的密铺,称作平面图形的 2、密铺的方法:⑴用同一种正多边形密铺,可以用 、 或 ⑵用两正多边形密铺,组合方式有: 和 、 和 、 和 合 等几种 【名师提醒:密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于 并使相等的边互相平合】 三、平行四边 1、定义:两组对边分别 的四边形是平行四边形,平行四边形ABCD可写成 2、平行四边形的特质: ⑴平行四边形的两组对边分别 ⑵平行四边形的两组对角分别 ⑶平行四边形的对角线 【名师提醒:1、平行四边形是 对称图形,对称中心是 过对角线交点的任一直线被一组对边的线段 该直线将原平行四边形分成全等的两个部分】 3、平行四边形的判定: ⑴用定义判定 ⑵两组对边分别 的四边形是平行四边形 ⑶一组对它 的四边形是平行四边形 ⑷两组对角分别 的四边形是平行四边形 ⑸对角线 的四边形是平行四边形 【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形两个命题都不被保证是平行四边形】 4、平行四边形的面积:计算公式 X 同底(等底)同边(等边)的平行四边形面积 【名师提醒:夹在两平行线间的平行线段 两平行线之间的距离处 】 【重点考点例析】 考点一:多边形内角和、外角和公式 例1 (2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= . 对应训练 1.(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 度. 考点二:平面图形的密铺 例2 (2012•贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是( ) A.正三角形 B.正四边形 C.正六边形 D.正八边形 考点三:平行四边形的性质 例3 (2012•阜新)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=14 AD,那么平行四边形ABCD应满足的条件是( ) A.∠ABC=60° B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8 例4 (2012•广安)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC. 对应训练 3.(2012•永州)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为 . 4.(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC. 考点四:平行四边形的判定 例5 (2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( ) A.一组对边平行,另一组对边相等的四边形是平行四边形 B.有一组对边平行的四边形是梯形 C.一组对边相等,一组对角相等的四边形是平行四边形 D.对角线相等的四边形是矩形 例6 (2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF. 求证:(1)△ABE≌△CDF; (2)四边形BFDE是平行四边形. 对应训练 5.(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有( ) A.1个 B.2个 C.3个 D.4个 6.(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN. (1)求证:△AEM≌△CFN; (2)求证:四边形BMDN是平行四边形. 【备考真题过关】 一、选择题 1.(2012•肇庆)一个多边形的内角和与外角和相等,则这个多边形是( ) A.四边形 B.五边形 C.六边形 D.八边形 2.(2012•玉林)正六边形的每个内角都是( ) A.60° B.80° C.100° D.120° 3.(2012•深圳)如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( ) A.120° B.180° C.240° D.300° 4.(2012•南宁)如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是( ) A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm 5.(2012•杭州)已知平行四边形ABCD中,∠B=4∠A,则∠C=( ) A.18° B.36° C.72° D.144° 6.(2012•巴中)不能判定一个四边形是平行四边形的条件是( ) A.两组对边分别平行 B.一组对边平行另一组对边相等 C.一组对边平行且相等 D.两组对边分别相等 7.(2012•广元)若以A(-0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边行,则第四个顶点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(2012•益阳)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是( ) A.平行四边形 B.矩形 C.菱形 D.梯形 9.(2012•德阳)如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又(点P、E在直线AB的同侧),如果BD=AB,那么△PBC的面积与△ABC面积之比为( ) A. B. C. D. 1.(2012•孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论: ①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题 10.(2012•义乌市)正n边形的一个外角的度数为60°,则n的值为 . 11.(2012•厦门)五边形的内角和的度数是 . 12.(2012•德阳)已知一个多边形的内角和是外角和的,则这个多边形的边数是 . 13.(2012•成都)如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1= . 14.(2012•黑龙江)如图,已知点E、F是平行四边形ABCD对角线上的两点,请添加一个条件 使△ABE≌△CDF(只填一个即可). 2.(2012•咸宁)如图,在梯形ABCD中,AD∥BC,∠C=90°,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当AD=2,BC=12时,四边形BGEF的周长为 28 . 3.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为 . 4.(2012•沈阳)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为 16 cm2. 5.(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 7 . 三、解答题 15.(2012•湖州)已知:如图,在▱ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E. (1)说明△DCE≌△FBE的理由; (2)若EC=3,求AD的长. 16.(2012•黄石)如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF. 17.(2012•泰州)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形. 19.(2012•厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF. (1)如图,若PE=,EO=1,求∠EPF的度数; (2)若点P是AD的中点,点F是DO的中点,BF=BC+3-4,求BC的长. 6.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2. (1)若CE=1,求BC的长; (2)求证:AM=DF+ME. 7.(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F. (1)求证:梯形ABCD是等腰梯形; (2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.查看更多