- 2021-05-10 发布 |
- 37.5 KB |
- 23页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国各地中考数学压轴题汇编三
2012年全国各地中考数学压轴题汇编三 【2012上海】 21、如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F. (1)求这个二次函数的解析式; (2)求线段EF、OF的长(用含t的代数式表示); (3)当∠ECA=∠OAC时,求t的值. 【2012广东】 22.如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC. (1)求AB和OC的长; (2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围; (3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π). (21世版 【2012嘉兴】 23、在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m. (1)如图1,当m=时, ①求线段OP的长和tan∠POM的值; ②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标; (2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E. ①用含m的代数式表示点Q的坐标; ②求证:四边形ODME是矩形. 【 2012贵州安顺】 24、如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0. (1)求抛物线的解析式. (2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动. ①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围. ②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由. 【2012•资阳】 25.抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B. (1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值; (2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB; (3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标. 【2012•德州】 26、如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论; (3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 【2012•湘潭】 27、如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 【2012•济宁】 28、如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP. (1)求该抛物线的解析式; (2)当动点P运动到何处时,BP2=BD•BC; (3)当△PCD的面积最大时,求点P的坐标. 【 2012•德阳】 29、在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E. (1)求经过点D、B、E的抛物线的解析式; (2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由; (3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标. 【 2012无锡】 30、如图1,A.D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示. (1)求A.B两点的坐标; (2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式. 答案: 21、解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0), ∴,解得, ∴这个二次函数的解析式为:y=﹣2x2+6x+8; (2)∵∠EFD=∠EDA=90°h ∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA ∴△EDF∽△DAO ∴. ∵, ∴=, ∴,∴EF=t. 同理, ∴DF=2,∴OF=t﹣2. (3)∵抛物线的解析式为:y=﹣2x2+6x+8, ∴C(0,8),OC=8. 如图,连接EC、AC,过A作EC的垂线交CE于G点. ∵∠ECA=∠OAC,∴∠OAC=∠GCA(等角的余角相等); 在△CAG与△OCA中,, ∴△CAG≌△OCA,∴CG=4,AG=OC=8. 如图,过E点作EM⊥x轴于点M,则在Rt△AEM中, ∴EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t, 由勾股定理得: ∵AE2=AM2+EM2=; 在Rt△AEG中,由勾股定理得: ∴EG=== ∵在Rt△ECF中,EF=t,CF=OC﹣OF=10﹣t,CE=CG+EG=+4 由勾股定理得:EF2+CF2=CE2, 即, 解得t1=10(不合题意,舍去),t2=6, ∴t=6. 22、解:(1)已知:抛物线y=x2﹣x﹣9; 当x=0时,y=﹣9,则:C(0,﹣9); 当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0); ∴AB=9,OC=9. (2)∵ED∥BC, ∴△AED∽△ABC, ∴=()2,即:=()2,得:s=m2(0<m<9). (3)S△AEC=AE•OC=m,S△AED=s=m2; 则:S△EDC=S△AEC﹣S△AED=﹣m2+m=﹣(m﹣)2+; ∴△CDE的最大面积为,此时,AE=m=,BE=AB﹣AE=. 过E作EF⊥BC于F,则Rt△BEF∽Rt△BCO,得: =,即:= ∴EF=; ∴以E点为圆心,与BC相切的圆的面积 S⊙E=π•EF2=. 23、解:(1)①把x=代入 y=x2,得 y=2,∴P(,2),∴OP= ∵PA丄x轴,∴PA∥MO.∴tan∠P0M=tan∠0PA==. ②设 Q(n,n2),∵tan∠QOB=tan∠POM, ∴.∴n= ∴Q(,),∴OQ=. 当 OQ=OC 时,则C1(0,),C2(0,); 当 OQ=CQ 时,则 C3(0,1). (2)①∵P(m,m2),设 Q(n,n2),∵△APO∽△BOQ,∴ ∴,得n=,∴Q(,). ②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q(,)代入,得: 解得b=1,∴M(0,1) ∵,∠QBO=∠MOA=90°, ∴△QBO∽△MOA ∴∠MAO=∠QOB, ∴QO∥MA 同理可证:EM∥OD 又∵∠EOD=90°, ∴四边形ODME是矩形. 24、解:(1)设抛物线的解析式为y=ax2+bx+c, 由题意知点A(0,﹣12), 所以c=﹣12, 又18a+c=0, , ∵AB∥OC,且AB=6, ∴抛物线的对称轴是, ∴b=﹣4, 所以抛物线的解析式为; (2)①,(0<t<6) ②当t=3时,S取最大值为9. 这时点P的坐标(3,﹣12), 点Q坐标(6,﹣6) 若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况: (Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18), (Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件. (Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件. 综上所述,点R坐标为(3,﹣18). 25、解:(1)y=x2+x+m=(x+2)2+(m﹣1) ∴顶点坐标为(﹣2,m﹣1) ∵顶点在直线y=x+3上, ∴﹣2+3=m﹣1, 得m=2; (2)∵点N在抛物线上, ∴点N的纵坐标为:a2+a+2, 即点N(a,a2+a+2) 过点F作FC⊥NB于点C, 在Rt△FCN中,FC=a+2,NC=NB﹣CB=a2+a, ∴NF2=NC2+FC2=(a2+a)2+(a+2)2, =(a2+a)2+(a2+4a)+4, 而NB2=(a2+a+2)2, =(a2+a)2+(a2+4a)+4 ∴NF2=NB2, NF=NB; (3)连接AF、BF, 由NF=NB,得∠NFB=∠NBF,由(2)的结论知,MF=MA, ∴∠MAF=∠MFA, ∵MA⊥x轴,NB⊥x轴, ∴MA∥NB,∴∠AMF+∠BNF=180° ∵△MAF和△NFB的内角总和为360°, ∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°, ∵∠MAB+∠NBA=180°, ∴∠FBA+∠FAB=90°, 又∵∠FAB+∠MAF=90°, ∴∠FBA=∠MAF=∠MFA, 又∵∠FPA=∠BPF, ∴△PFA∽△PBF, ∴=,PF2=PA×PB=, 过点F作FG⊥x轴于点G,在Rt△PFG中, PG==, ∴PO=PG+GO=, ∴P(﹣,0) 设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b, 解得k=,b=, ∴直线PF:y=x+, 解方程x2+x+2=x+, 得x=﹣3或x=2(不合题意,舍去), 当x=﹣3时,y=, ∴M(﹣3,). 26、(1)解:如图1,∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH﹣∠EPB=∠EBC﹣∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH. (2)△PHD的周长不变为定值8. 证明:如图2,过B作BQ⊥PH,垂足为Q. 由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, ∴△ABP≌△QBP. ∴AP=QP,AB=BQ. 又∵AB=BC, ∴BC=BQ. 又∵∠C=∠BQH=90°,BH=BH, ∴△BCH≌△BQH. ∴CH=QH. ∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. (3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB. 又∵EF为折痕, ∴EF⊥BP. ∴∠EFM+∠MEF=∠ABP+∠BEF=90°, ∴∠EFM=∠ABP. 又∵∠A=∠EMF=90°, ∴△EFM≌△BPA. ∴EM=AP=x. ∴在Rt△APE中,(4﹣BE)2+x2=BE2. 解得,. ∴. 又四边形PEFG与四边形BEFC全等, ∴. 即:. 配方得,, ∴当x=2时,S有最小值6. 27、解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA•OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b=x2﹣x﹣2,即: x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=4; ∴直线l:y=x﹣4. 由于S△MBC=BC×h,当h最大(即点M到直线BC的距离最远)时,△ABC的面积最大 所以点M即直线l和抛物线的唯一交点,有: , 解得: 即 M(2,﹣3). 28、解:(1)由题意,得, 解得, ∴抛物线的解析式为y=﹣x﹣4; (2)设点P运动到点(x,0)时,有BP2=BD•BC, 令x=0时,则y=﹣4, ∴点C的坐标为(0,﹣4). ∵PD∥AC, ∴△BPD∽△BAC, ∴. ∵BC=, AB=6,BP=x﹣(﹣2)=x+2. ∴BD===. ∵BP2=BD•BC, ∴(x+2)2=, 解得x1=,x2=﹣2(﹣2不合题意,舍去), ∴点P的坐标是(,0),即当点P运动到(,0)时,BP2=BD•BC; (3)∵△BPD∽△BAC, ∴, ∴× S△BPC=×(x+2)×4﹣ ∵, ∴当x=1时,S△BPC有最大值为3. 即点P的坐标为(1,0)时,△PDC的面积最大. 29、解:(1)∵BE⊥DB交x轴于点E,OABC是正方形, ∴∠DBC=EBA. 在△BCD与△BAE中, ∵, ∴△BCD≌△BAE,∴AE=CD. ∵OABC是正方形,OA=4,D是OC的中点, ∴A(4,0),B(4,4),C(0,4),D(0,2),∴E(6,0). 设过点D(0,2),B(4,4),E(6,0)的抛物线解析式为y=ax2+bx+c,则有: , 解得, ∴经过点D、B、E的抛物线的解析式为:y=x2+x+2. (2)结论OF=DG能成立.理由如下: 由题意,当∠DBE绕点B旋转一定的角度后,同理可证得△BCG≌△BAF,∴AF=CG. ∵xM=,∴yM=xM2+xM+2=,∴M(,). 设直线MB的解析式为yMB=kx+b, ∵M(,),B(4,4), ∴, 解得, ∴yMB=x+6, ∴G(0,6), ∴CG=2,DG=4. ∴AF=CG=2,OF=OA﹣AF=2,F(2,0). ∵OF=2,DG=4, ∴结论OF=DG成立. (3)如图,△PFE为等腰三角形,可能有三种情况,分类讨论如下: ①若PF=FE. ∵FE=4,BC与OA平行线之间距离为4, ∴此时P点位于射线CB上, ∵F(2,0), ∴P(2,4),此时直线FP⊥x轴, ∴xQ=2, ∴yQ=xQ2+xQ+2=,∴Q1(2,); ②若PF=PE. 如图所示,∵AF=AE=2,BA⊥FE, ∴△BEF为等腰三角形, ∴此时点P、Q与点B重合, ∴Q2(4,4); ③若PE=EF. ∵FE=4,BC与OA平行线之间距离为4, ∴此时P点位于射线CB上, ∵E(6,0),∴P(6,4). 设直线yPF的解析式为yPF=kx+b,∵F(2,0),P(6,4), ∴, 解得, ∴yPF=x﹣2. ∵Q点既在直线PF上,也在抛物线上, ∴x2+x+2=x﹣2,化简得5x2﹣14x﹣48=0, 解得x1=,x2=﹣2(不合题意,舍去) ∴xQ=2, ∴yQ=xQ﹣2=﹣2=. ∴Q3(,). 综上所述,Q点的坐标为Q1(2,)或Q2(4,4)或Q3(,). 30、解:(1)连接AD,设点A的坐标为(a,0), 由图2知,DO+OA=6cm, DO=6﹣AO, 由图2知S△AOD=4, ∴DO•AO=4, ∴a2﹣6a+8=0, 解得a=2或a=4, 由图2知,DO>3, ∴AO<3, ∴a=2, ∴A的坐标为(2,0), D点坐标为(0,4), 在图1中,延长CB交x轴于M, 由图2,知AB=5cm,CB=1cm, ∴MB=3, ∴AM==4. ∴OM=6, ∴B点坐标为(6,3); (2)显然点P一定在AB上.设点P(x,y),连PC.PO,则 S四边形DPBC=S△DPC+S△PBC=S五边形OABCD=(S矩形OMCD﹣S△ABM)=9, ∴6×(4﹣y)+×1×(6﹣x)=9, 即x+6y=12, 同理,由S四边形DPAO=9可得2x+y=9, 由A(2,0),B(6,3)求得直线AB的函数关系式为y=, 由[或或] 解得x=,y=. ∴P(,), 设直线PD的函数关系式为y=kx+4, 则=k+4, ∴k=﹣, ∴直线PD的函数关系式为y=﹣x+4.查看更多