中考培优班复习——圆的综合应用

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考培优班复习——圆的综合应用

中考培优班复习——圆的综合应用 ‎【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.‎ ‎(1)求证:DE为⊙O的切线;‎ ‎(2)若DE=2,tanC=,求⊙O的直径.‎ ‎【例2】已知:如图,为的外接圆,为的直径,作射线,使得平分,过点作于点.‎ ‎(1)求证:为的切线;‎ ‎(2)若,,求的半径. ‎ ‎【例3】已知:如图,点是⊙的直径延长线上一点,点 ‎ 在⊙上,且 ‎(1)求证:是⊙的切线;‎ ‎(2)若点是劣弧上一点,与相交 于点,且,,‎ 求⊙的半径长.‎ ‎【例4】如图,等腰三角形中,,.以为直径作交于点,交于点,,垂足为,交的延长线于点.‎ ‎(1)求证:直线是的切线;‎ ‎(2)求的值.‎ ‎【例5】如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.‎ ‎(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;‎ ‎(2)在(1)的条件不变的情况下,若GC=CD=5,求AD的长.‎ 发散思考 ‎【思考1】如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B. ‎ ‎(1)求证:AD是⊙O的切线;‎ ‎(2)若⊙O的半径为3,AB=4,求AD的长.‎ ‎【思考2】已知:如图,AB为⊙O的弦,过点O作AB的平行线,交 ‎ ⊙O于点C,直线OC上一点D满足∠D=∠ACB.‎ ‎(1)判断直线BD与⊙O的位置关系,并证明你的结论;‎ ‎(2)若⊙O的半径等于4,,求CD的长.‎ ‎【思考3】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.‎ ‎(1)求证:AE与⊙O相切;‎ ‎(2)当BC=4,cosC=时,求⊙O的半径. ‎ ‎【思考4】如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,‎ D为上一点, CE⊥AD于E.‎ ‎ 求证:AE= BD +DE.‎ ‎【思路分析】 前面的题目大多是有关切线问题,但是未必所有的圆问题都和切线有关,去年西城区这道模拟题就是无切线问题的代表。此题的关键在于如何在图形中找到和BD相等的量来达到转化的目的。如果图形中所有线段现成的没有,那么就需要自己去截一段,然后去找相似或者全等三角形中的线段关系。‎ ‎【思考5】如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.‎ (1) 求证:DE是⊙O的切线;‎ (2) 若AB=6,BD=3,求AE和BC的长.‎ ‎【思路分析】又是一道非常典型的用角证平行的题目。题目中虽未给出AC评分角EAD这样的条件,但是通过给定CE=CF,加上有一个公共边,那么很容易发现△EAC和△CAF是全等的。于是问题迎刃而解。第二问中依然要注意找到已知线段的等量线段,并且利用和,差等关系去转化。‎
查看更多

相关文章

您可能关注的文档