- 2021-05-10 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
宝山嘉定区中考数学二模试卷及答案
2015学年第二学期期中考试九年级数学试卷 (满分150分,考试时间100分钟) 考生注意: 1. 本试卷含三个大题,共25题; 2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、 选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.﹣2的倒数是(▲) (A)﹣5; (B)2; (C)﹣; (D). 2. 下列计算正确的是(▲) (A); (B); (C); (D) 3.某地气象局预报称:明天地区降水概率为,这句话指的是(▲) (A)明天地区的时间都下雨; (B)明天地区的降雨量是同期的; (C)明天地区的地方都下雨; (D)明天地区下雨的可能性是. 4.某老师在试卷分析中说:参加这次考试的82位同学中,考91分的人数最多,有11人之众, 但是十分遗憾最低的同学仍然只得了56分。这说明本次考试分数的众数是(▲) (A)82; (B)91; (C)11; (D)56. 5.如果点K、L、M、N分别是四边形ABCD的四条边AB、BC、CD、DA的中点,且四边形KLMN是菱形,那么下列选项正确的是(▲) (A) AB⊥BC; (B) AC⊥BD; (C) AB=BC; (D) AC=BD. 6.如图1,梯形中,∥,,.点在上,点 A B C D E F 图1 在上,将梯形沿直线翻折,使得点B与点D重合.如果,那么的值是(▲) (A) ; (B) ; (C) ; (D) . 二、 填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.据统计,今年上海“樱花节”活动期间顾村公园入园赏樱人数约312万人次,用科学记数法可表示为 ▲ 人次. 8.因式分解:= ▲ . 9.不等式组的解集是 ▲ . 10.如果在组成反比例函数图像的每条曲线上,都随的增大而增大,那么的取值范围是 ▲ . 11.如果函数的图像沿轴的正方向平移1个单位后与抛物线重合,那么函数的解析式是 ▲ . 12.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选 ▲ 同学. 甲 乙 丙 丁 平均数 70 85 85 70 标准差 6.5 6.5 7.6 7.6 13.方程的解是 ▲ . 14.已知在平行四边形ABCD中,点M、N分别是边AB、BC的中点,如果,,那么向量= ▲ (结果用、表示). 15.以点、、为圆心的圆分别记作⊙、⊙、⊙,其中⊙的半径长为1、⊙的半径长为2、⊙的半径长为3,如果这三个圆两两外切,那么的值是 ▲ . B A C D 图2 16.如图2,如果在大厦所在的平地上选择一点C,测得大厦顶端A的仰角为30°,然后向大厦方向前进40米,到达点D处(C、D、B三点在同一直线上),此时测得大厦顶端A的仰角为45°.那么大厦AB的高度为 ▲ 米.(保留根号) 17.对于实数m、n,定义一种运算“”为:.如果关于x的方程有两个相等的实数根,那么满足条件的实数a的值是 ▲ . 图3 18.如图3,点D在边长为6的等边△ABC的边AC上,且AD=2,将△ABC绕点C顺时针方向旋转60°,若此时点A和点D的对应点分别记作点E和点F,联结BF交边AC于点G,那么= ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 化简,再求值: ,其中. 20.(本题满分10分) 解方程: 21.(本题满分10分) 图4 如图4,在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②联结MN,直线MN交△ABC的边AC于点D,联结BD.如果此时测得∠A=34°,BC= CD.求∠ABC与∠C的度数. 22.(本题满分10分,每小题满分各5分) 在平面直角坐标系中(图5),过点向轴作垂线,垂足为,联结得到△AOB,过边中点的反比例函数的图像与边交于点. 图5 求:(1)求反比例函数的解析式; (2)求直线CD与轴的交点坐标. 23.(本题满分12分,每小题满分各6分) 图6 如图6,BD是平行四边形ABCD的对角线,若∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE与BF相交于H,BF与AD的延长线相交于G. 求证:(1)CD=BH; (2)AB是AG和HE的比例中项. 24. (本题满分12分,每小题满分各4分) 在平面直角坐标系(如图7)中,经过点的抛物线与y轴交于点,点与点、点与点分别关于该抛物线的对称轴对称. 图7 (1)求的值以及直线与轴正方向的夹角; (2)如果点是抛物线上的一动点,过作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD于点G,设E的横坐标为,△EFG的周长为,试用表示; (3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标. 25. (本题满分14分,每小题满分分别为4分、4分、6分) 如图8,⊙O与过点O的⊙P相交于AB,D是⊙P的劣弧OB上一点,射线OD交⊙O 于点E,交AB的延长线于点C.如果AB=24,. 图8 (1) 求⊙P的半径长; (2) 当△AOC为直角三角形时,求线段OD的长; (3) 设线段OD的长度为,线段CE的长度为, 求y与之间的函数关系式及其定义域.查看更多