- 2021-05-10 发布 |
- 37.5 KB |
- 34页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考压轴题动点探究规律含详细答案
2015年05月22日规律&动点&选填 一.选择题(共12小题) 1.(2014•绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( ) A. B. C. D. 2.(2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是( ) A. 30° B. 45° C. 60° D. 70° 3.(2014•重庆)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( ) A. 22 B. 24 C. 26 D. 28 4.(2014•重庆)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是( ) A. (,0) B. (,0) C. (,0) D. (,0) 5.(2014•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( ) A. 20 B. 27 C. 35 D. 40 6.(2014•舟山)如下图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为( ) A. 2cm B. 2cm C. 4cm D. 4cm 7.(2014•台州)如上中图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为( ) A. 4:3 B. 3:2 C. 14:9 D. 17:9 8.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( ) A. B. C. D. 9.(2014•台湾)如上右图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?( ) A. 16 B. 24 C. 36 D. 54 10.(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( ) A. n B. n﹣1 C. ()n﹣1 D. n 11.(2014•凉山州)下列图形中阴影部分的面积相等的是( ) A. ②③ B. ③④ C. ①② D. ①④ 12.(2014•内江)如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1B2、B1A2、A2B3、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则Sn为( ) A. B. C. D. 二.填空题(共4小题) 14.(2014•重庆)在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将小球上的数字作为a的值,则使关于x的不等式组只有一个整数解的概率为 . 15.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下: 则第n次运算的结果yn= (用含字母x和n的代数式表示). 16.(2014•宜宾)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny. 据此判断下列等式成立的是 (写出所有正确的序号) ①cos(﹣60°)=﹣; ②sin75°=; ③sin2x=2sinx•cosx; ④sin(x﹣y)=sinx•cosy﹣cosx•siny. 三.解答题(共13小题) 17.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊. (1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施? (2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值. 18.(2014•新疆)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象. (1)填空:A,B两地相距 千米; (2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式; (3)客、货两车何时相遇? 19.(2014•舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示). (1)根据上述数学模型计算: ①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x=5时,y=45,求k的值. (2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由. 20.(2014•台州)如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m). 21.(2014•宁波)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用). A方法:剪6个侧面; B方法:剪4个侧面和5个底面. 现有19张硬纸板,裁剪时x张用A方法,其余用B方法. (1)用x的代数式分别表示裁剪出的侧面和底面的个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子? 22.(2014•新疆)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3). (1)写出A,B两点的坐标; (2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大? (3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标. 23.(2014•温州)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒. (1)当点C运动到线段OB的中点时,求t的值及点E的坐标; (2)当点C在线段OB上时,求证:四边形ADEC为平行四边形; (3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中,设▱PCOD的面积为S. ①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值; ②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围. 24.(2014•重庆)如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒. (1)求线段AC的长; (2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围; (3)当等边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由. 25.(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2. 证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a. ∵S四边形ADCB=S△ACD+S△ABC=b2+ab. 又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a) ∴b2+ab=c2+a(b﹣a) ∴a2+b2=c2 请参照上述证法,利用图2完成下面的证明. 将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°. 求证:a2+b2=c2 证明:连结 ∵S五边形ACBED= 又∵S五边形ACBED= ∴ ∴a2+b2=c2. 26.(2014•宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法. 我们有多少种剪法,图1是其中的一种方法: 定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线. (1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种) (2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值; (3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长. 27.(2014•舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”. (1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数. (2)在探究“等对角四边形”性质时: ①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论; ②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例. (3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长. 28.(2014•内江)如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD. 问题引入: (1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC= ;当点D是BC边上任意一点时,S△ABD:S△ABC= (用图中已有线段表示). 探索研究: (2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想S△BOC与S△ABC之比应该等于图中哪两条线段之比,并说明理由. 拓展应用: (3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想++的值,并说明理由. 29.(2014•凉山州)实验与探究: 三角点阵前n行的点数计算 如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点… 容易发现,10是三角点阵中前4行的点数的和,你能发现300是前多少行的点数的和吗? 如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系 前n行的点数的和是1+2+3+…+(n﹣2)+(n﹣1)+n,可以发现. 2×[1+2+3+…+(n﹣2)+(n﹣1)+n] =[1+2+3+…+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+…3+2+1] 把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到 1+2+3+…+(n﹣2)+(n﹣1)+n=n(n+1) 这就是说,三角点阵中前n项的点数的和是n(n+1) 下列用一元二次方程解决上述问题 设三角点阵中前n行的点数的和为300,则有n(n+1)=300 整理这个方程,得:n2+n﹣600=0 解方程得:n1=24,n2=﹣25 根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300. 请你根据上述材料回答下列问题: (1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理. (2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究出前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理. 2015年05月22日规律&动点&选填 参考答案与试题解析 一.选择题(共12小题) 1.(2014•绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( ) A. B. C. D. 解答: 解:由题意要求知,展开铺平后的图形是B. 故选:B. 2.(2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是( ) A. 30° B. 45° C. 60° D. 70° 分析: 先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.故选:C. 3.(2014•重庆)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( ) A. 22 B. 24 C. 26 D. 28 解答: 解:第一个图形有2+6×0=2个三角形; 第二个图形有2+6×1=8个三角形; 第三个图形有2+6×2=14个三角形; … 第五个图形有2+6×4=26个三角形; 故选:C. 4.(2014•重庆)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是( ) A. (,0) B. (,0) C. (,0) D. (,0) 分析: 由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则E点坐标为(3,),然后利用待定系数法确定直线GF的解析式为y=x﹣2,再求y=0时对应自变量的值,从而得到点F的坐标. 解答: 解:∵正方形的顶点A(m,2), ∴正方形的边长为2, ∴BC=2, 而点E(n,), ∴n=2+m,即E点坐标为(2+m,), ∴k=2•m=(2+m),解得m=1, ∴E点坐标为(3,), 设直线GF的解析式为y=ax+b, 把E(3,),G(0,﹣2)代入得,解得, ∴直线GF的解析式为y=x﹣2, 当y=0时,x﹣2=0,解得x=, ∴点F的坐标为(,0). 故选:C. 5.(2014•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( ) A. 20 B. 27 C. 35 D. 40 分析: 第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=,进一步求得第(6)个图形中面积为1的正方形的个数即可. 解答: 解:第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个, 第(3)个图形中面积为1的正方形有2+3+4=9个, …, 按此规律, 第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个. 故选:B. 6.(2014•舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为( ) A. 2cm B. 2cm C. 4cm D. 4cm 分析: 先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD=AB=2 故选:B 点评: 本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质. 7.(2014•台州)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为( ) A. 4:3 B. 3:2 C. 14:9 D. 17:9 分析: 首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.图中阴影部分图形的面积与四边形EMCN的面积之比为:=. 故选:C. 8.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( ) A. B. C. D. 分析: 分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断. 解答: 解:A、延长AC、BE交于S, ∵∠CAB=∠EDB=45°, ∴AS∥ED,则SC∥DE. 同理SE∥CD, ∴四边形SCDE是平行四边形, ∴SE=CD,DE=CS, 即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS; B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K, ∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB, ∴△SAB≌△S1AB, ∴AS=AS1,BS=BS1, ∵∠FGH=180°﹣70°﹣43°=67°=∠GHB, ∴FG∥KH, ∵FK∥GH, ∴四边形FGHK是平行四边形, ∴FK=GH,FG=KH, ∴AF+FG+GH+HB=AF+FK+KH+HB, ∵FS1+S1K>FK, ∴AS+BS>AF+FK+KH+HB, 即AC+CD+DE+EB>AF+FG+GH+HB, C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB. 综上所述,D选项的所走的线路最长. 故选:D. 9.(2014•台湾)如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?( ) A. 16 B. 24 C. 36 D. 54 解答: 解:S△ADC=S△AGC﹣S△ADG =×AG×BC﹣×AG×BF =×8×(6+9)﹣×8×9 =60﹣36 =24. 故选:B. 10.(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是( ) A. n B. n﹣1 C. ()n﹣1 D. n 解答: 解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1, 5个这样的正方形重叠部分(阴影部分)的面积和为:1×4, n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1. 故选:B. 11.(2014•凉山州)下列图形中阴影部分的面积相等的是( ) A. ②③ B. ③④ C. ①② D. ①④ 解答: ②③的面积相等,故选:A. 12.(2014•内江)如图,已知A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1,连接A1B2、B1A2、A2B3、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn.△A1B1P1、△A2B2P2、△AnBnPn的面积依次记为S1、S2、S3、…、Sn,则Sn为( ) A. B. C. D. 分析: 根据图象上点的坐标性质得出点B1、B2、B3、…、Bn、Bn+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、…、Sn,进而得出答案. 解答: 解:∵A1、A2、A3、…、An、An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An、An+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、Bn、Bn+1, ∴依题意得:B1(1,2),B2(2,4),B3(3,6),…,Bn(n,2n) ∵A1B1∥A2B2, ∴△A1B1P1∽△A2B2P1, ∴=, ∴△A1B1P1与△A2B2P1对应高的比为:1:2, ∵A1A2=1, ∴A1B1边上的高为:, ∴=××2=, 同理可得:=,=, ∴Sn=. 故选:D. 二.填空题(共3小题) 14.(2014•重庆)在一个不透明的盒子里装着4个分别标有数字1,2,3,4的小球,它们除数字不同外其余完全相同,搅匀后从盒子里随机取出1个小球,将小球上的数字作为a的值,则使关于x的不等式组只有一个整数解的概率为 . 解答: 解:∵不等式组只有一个整数解, ∴(a+2)﹣(2a﹣1)=1, 解得a=2, ∴P=. 故答案为:. 15.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下: 则第n次运算的结果yn= (用含字母x和n的代数式表示). 解答: 解:将y1=代入得:y2==;将y2=代入得:y3==, 依此类推,第n次运算的结果yn=.故答案为:. 16.(2014•宜宾)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny. 据此判断下列等式成立的是 ②③④ (写出所有正确的序号) ①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny. 解答: 解:①cos(﹣60°)=cos60°=,命题错误; ②sin75°=sin(30°+45°)=sin30°•cos45°+cos30°•sin45°=×+×=+=,命题正确; ③sin2x=sinx•cosx+cosx•sinx=2sinx•cosx,命题正确; ④sin(x﹣y)=sinx•cos(﹣y)+cosx•sin(﹣y)=sinx•cosy﹣cosx•siny,命题正确. 故答案为:②③④. 三.解答题(共13小题) 17.(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊. (1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施? (2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值. 解答: 解:(1)设用于购买书桌、书架等设施的为x元,则购买书籍的有(30000﹣x)元, 根据题意得:30000﹣x≥3x, 解得:x≤7500. 答:最多用7500元购买书桌、书架等设施; (2)根据题意得:200(1+a%)×150(1﹣a%)=20000 整理得:a2+10a﹣3000=0, 解得:a=50或a=﹣60(舍去), 所以a的值是50. 18.(2014•新疆)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象. (1)填空:A,B两地相距 440 千米; (2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式; (3)客、货两车何时相遇? 解答: 解:(1)填空:A,B两地相距:360+80=440千米; (2)由图可知货车的速度为80÷2=40千米/小时, 货车到达A地一共需要2+360÷40=11小时, 设y2=kx+b,代入点(2,0)、(11,360)得 , 解得, 所以y2=40x﹣80; (3)设y1=mx+n,代入点(6,0)、(0,360)得 解得, 所以y1=﹣60x+360 由y1=y2得,40x﹣80=﹣60x+360 解得x=4.4 答:客、货两车经过4.4小时相遇. 19.(2014•舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示). (1)根据上述数学模型计算: ①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x=5时,y=45,求k的值. (2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由. 解答: 解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200, ∴x=1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升); ②∵当x=5时,y=45,y=(k>0), ∴k=xy=45×5=225; (2)不能驾车上班; 理由:∵晚上20:00到第二天早上7:00,一共有11小时, ∴将x=11代入y=,则y=>20, ∴第二天早上7:00不能驾车去上班. 20.(2014•台州)如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m). 解答: 解:过点D作DE⊥AC于点E,过点D作DF⊥BC于点F, 由题意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m, ∴cos∠ADE=cos15°=≈0.97,∴≈0.97, 解得:DE=1552(m),sin15°=≈0.26,∴≈0.26,解得;AE=416(m), ∴DF=500﹣416=84(m),∴tan∠BDF=tan15°=≈0.27,∴≈0.27, 解得:BF=22.68(m), ∴BC=CF+BF=1552+22.68=1574.68≈1575(m), 答:他飞行的水平距离为1575m. 21.(2014•宁波)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用). A方法:剪6个侧面; B方法:剪4个侧面和5个底面. 现有19张硬纸板,裁剪时x张用A方法,其余用B方法. (1)用x的代数式分别表示裁剪出的侧面和底面的个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子? 分析: (1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数; (2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论. 解答: 解:(1)∵裁剪时x张用A方法, ∴裁剪时(19﹣x)张用B方法. ∴侧面的个数为:6x+4(19﹣x)=(2x+76)个, 底面的个数为:5(19﹣x)=(95﹣5x)个; (2)由题意,得 , 解得:x=7, 经检验,x=7是原分式方程的解, ∴盒子的个数为:=30. 答:裁剪出的侧面和底面恰好全部用完,能做30个盒子. 22.(2014•新疆)如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3). (1)写出A,B两点的坐标; (2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大? (3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标. 解答: 解:(1)令y=0,则﹣x+8=0, 解得x=6, x=0时,y=y=8, ∴OA=6,OB=8, ∴点A(6,0),B(0,8); (2)在Rt△AOB中,由勾股定理得,AB===10, ∵点P的速度是每秒2个单位,点Q的速度是每秒1个单位, ∴AP=2t, AQ=AB﹣BQ=10﹣t, ∴点Q到AP的距离为AQ•sin∠OAB=(10﹣t)×=(10﹣t), ∴△AQP的面积S=×2t×(10﹣t)=﹣(t2﹣10t)=﹣(t﹣5)2+20, ∵﹣<0,0<t≤3, ∴当t=3时,△AQP的面积最大,S最大=﹣(3﹣5)2+20=; (3)若∠APQ=90°,则cos∠OAB=, ∴=, 解得t=, 若∠AQP=90°,则cos∠OAB=, ∴=, 解得t=, ∵0<t≤3, ∴t的值为, 此时,OP=6﹣2×=, PQ=AP•tan∠OAB=(2×)×=, ∴点Q的坐标为(,), 综上所述,t=秒时,以点A,P,Q为顶点的三角形与△ABO相似,此时点Q的坐标为(,). 23.(2014•温州)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒. (1)当点C运动到线段OB的中点时,求t的值及点E的坐标; (2)当点C在线段OB上时,求证:四边形ADEC为平行四边形; (3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中,设▱PCOD的面积为S. ①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值; ②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围. 分析: (1)由C是OB的中点求出时间,再求出点E的坐标, (2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC是平行四边形. (3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解; 当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC求解; ②当1≤t<时和当<t≤5时,分别求出S的取值范围, 解答: 解:(1)∵OB=6,C是OB的中点, ∴BC=OB=3, ∴2t=3即t=, ∴OE=+3=,E(,0); (2)如图,连接CD交OP于点G, 在▱PCOD中,CG=DG,OG=PG, ∵AO=PE, ∴AG=EG, ∴四边形ADEC是平行四边形. (3)①(Ⅰ)当点C在BO上时, 第一种情况:如图,当点M在CE边上时, ∵MF∥OC, ∴△EMF∽△ECO, ∴=,即=, ∴t=1, 第二种情况:当点N在DE边时, ∵NF∥PD, ∴△EFN∽△EPD, ∴=,即=, ∴t=, (Ⅱ)当点C在BO的延长线上时, 第一种情况:当点M在DE边上时, ∵MF∥PD, ∴△EMF∽△EDP, ∴= 即 =, ∴t=, 第二种情况:当点N在CE边上时, ∵NF∥OC, ∴△EFN∽△EOC, ∴=即 =, ∴t=5. ②<S≤或<S≤20. 当1≤t<时, S=t(6﹣2t)=﹣2(t﹣)2+, ∵t=在1≤t<范围内, ∴<S≤, 当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣, ∴<S≤20. 24.(2014•重庆)如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F 的运动过程中,以EF为边作等边△EFG,使△EFG与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒. (1)求线段AC的长; (2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围; (3)当等边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由. 分析: (1)利用平行四边形性质、勾股定理,求出DH、CH的长度,可以判定△ACD为等腰三角形,则AC=AD=7; (2)首先证明点G始终在直线AB上,然后分析运动过程,求出不同时间段内S的表达式: ①当0≤t≤时,如答图2﹣1所示,等边△EFG在△内部; ②当<t≤4时,如答图2﹣2所示,点G在线段AB上,点F在AC的延长线上; ③当4<t≤7时,如答图2﹣3所示,点G、F分别在AB、AC的延长线上,点E在线段AC上. (3)因为∠MCN为等腰三角形的底角,因此只可能有两种情形: ①若点N为等腰三角形的顶点,如答图3﹣1所示; ②若点M为等腰三角形的顶点,如答图3﹣2所示. 解答: 解:(1)∵▱ABCD,∴CD=AB=4. 在Rt△ADH中,由勾股定理得:DH===2, ∴CH=DH. ∴AC=AD=7. (2)在运动过程中,AE=t,AF=3t,∴等边△EFG的边长EF=EG=GF=2t. 如答图1,过点G作GP⊥AC于点P,则EP=EG=t,GP=EG=t. ∴AP=AE+EP=2t. ∴tan∠GAC===. ∵tan∠BAC=tan∠ACH===, ∴tan∠GAC=tan∠BAC, ∴点G始终在射线AB上. 设∠BAC=∠ACH=θ,则sinθ==,cosθ==. ①当0≤t≤时,如答图2﹣1所示,等边△EFG在△内部. S=S△EFG=EF2=(2t)2=t2; ②当<t≤4时,如答图2﹣2所示,点G在线段AB上,点F在AC的延长线上. 过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8. ∴CQ=AQ﹣AC=8﹣7=1. 设BC与GF交于点K,过点K作KP⊥AF于点P, 设KP=x,则PF==x, ∴CP=CF﹣PF=3t﹣7﹣x. ∵PK∥BQ, ∴,即,解得:x=(3t﹣7). ∴S=S△EFG﹣S△CFK=t2﹣(3t﹣7)•(3t﹣7)=﹣t2+t﹣; ③当4<t≤7时,如答图2﹣3所示,点G、F分别在AB、AC的延长线上,点E在线段AC上. 过点B作BQ⊥AF于点Q,则BQ=AB•sinθ=4×=4,AQ=AB•cosθ=4×=8. ∴CQ=AQ﹣AC=8﹣7=1. 设BC与GF交于点K,过点K作KP⊥AF于点P, 设KP=x,则EP==x, ∴CP=EP﹣CE=x﹣(7﹣t)=x﹣7+t. ∵PK∥BQ, ∴,即,解得:x=(7﹣t). ∴S=S△CEK=(7﹣t)•(7﹣t)=t2﹣t+. 综上所述,S与t之间的函数关系式为: S=. (3)设∠ACH=θ,则tanθ===,cosθ==. 当点E与点C重合时,t=7,∴等边△EFG的边长=2t=14. 假设存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形, ①若点N为等腰三角形的顶点,如答图3﹣1所示,则∠NMC=∠MCN=θ. 过点C作CP⊥F′M于点P,则CP=CF′=7. ∴PM===14. 设CN=MN=x,则PN=PM﹣MN=14﹣x. 在Rt△CNP中,由勾股定理得:CP2+PN2=CN2,即:(7)2+(14﹣x)2=x2, 解得:x=. 过点N作NQ⊥CM于点Q, ∴CM=2CQ=2CN•cosθ=2××=7; ②若点M为等腰三角形的顶点,如答图3﹣2所示,则∠MNC=∠MCN=θ. 过点C作CP⊥G′N于点P,则CP=CF′=7. ∴PN===14. 设CM=MN=x,则PM=PN﹣MN=14﹣x. 在Rt△CMP中,由勾股定理得:CP2+PM2=CM2,即:(7)2+(14﹣x)2=x2, ∴CM=x=. 综上所述,存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形,CM的长度为7或. 25.(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2. 证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a. ∵S四边形ADCB=S△ACD+S△ABC=b2+ab. 又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a) ∴b2+ab=c2+a(b﹣a) ∴a2+b2=c2 请参照上述证法,利用图2完成下面的证明. 将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°. 求证:a2+b2=c2 证明:连结 BD,过点B作DE边上的高BF,则BF=b﹣a, ∵S五边形ACBED= S△ACB+S△ABE+S△ADE=ab+b2+ab, 又∵S五边形ACBED= S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a), ∴ ab+b2+ab=ab+c2+a(b﹣a), ∴a2+b2=c2. 解答: 证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a, ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab, 又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a), ∴ab+b2+ab=ab+c2+a(b﹣a), ∴a2+b2=c2. 点评: 此题主要考查了勾股定理得证明,表示出五边形面积是解题关键. 26.(2014•宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法. 我们有多少种剪法,图1是其中的一种方法: 定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线. (1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种) (2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值; (3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长. 分析: (1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法. (2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再标准作图实验﹣﹣分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC.根据图形易得x的值. (3)因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长. 解答: 解:(1)如图2作图, (2)如图3 ①、②作△ABC. ①当AD=AE时, ∵2x+x=30+30, ∴x=20. ②当AD=DE时, ∵30+30+2x+x=180, ∴x=40. 所以∠C的度数是20°或40°; (3)如图4,CD、AE就是所求的三分线. 设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α, 此时△AEC∽△BDC,△ACD∽△ABC, 设AE=AD=x,BD=CD=y, ∵△AEC∽△BDC, ∴x:y=2:3, ∵△ACD∽△ABC, ∴2:x=(x+y):2, 所以联立得方程组, 解得 , 即三分线长分别是和. 27.(2014•舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”. (1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数. (2)在探究“等对角四边形”性质时: ①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论; ②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例. (3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长. 分析: (1)利用“等对角四边形”这个概念来计算. (2)①利用等边对等角和等角对等边来证明; ②举例画图; (3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解; (Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解. 解答: 解:(1)如图1 ∵等对角四边形ABCD,∠A≠∠C, ∴∠D=∠B=80°, ∴∠C=360°﹣70°﹣80°﹣80°=130°; (2)①如图2,连接BD, ∵AB=AD, ∴∠ABD=∠ADB, ∵∠ABC=∠ADC, ∴∠ABC﹣∠ABD=∠ADC﹣∠ADB, ∴∠CBD=∠CDB, ∴CB=CD, ②不正确, 反例:如图3,∠A=∠C=90°,AB=AD, 但CB≠CD, (3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E, ∵∠ABC=90°,∠DAB=60°,AB=5, ∴AE=10, ∴DE=AE﹣AD=10﹣4=6, ∵∠EDC=90°,∠E=30°, ∴CD=2, ∴AC===2 (Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F, ∵DE⊥AB,∠DAB=60°AD=4, ∴AE=2,DE=2, ∴BE=AB﹣AE=5﹣2=3, ∵四边形BFDE是矩形, ∴DF=BE=3,BF=DE=2, ∵∠BCD=60°, ∴CF=, ∴BC=CF+BF=+2=3, ∴AC===2. 28.(2014•内江)如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD. 问题引入: (1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC= 1:2 ;当点D是BC边上任意一点时,S△ABD:S△ABC= BD:BC (用图中已有线段表示). 探索研究: (2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想S△BOC与S△ABC之比应该等于图中哪两条线段之比,并说明理由. 拓展应用: (3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想++的值,并说明理由. 分析: (1)根据三角形的面积公式,两三角形等高时,可得两三角形底与面积的关系,可得答案; (2)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,可得答案; (3)根据三角形的面积公式,两三角形等底时,可得两三角形的高与面积的关系,再根据分式的加减,可得答案. 解答: 解:(1)如图①,当点D是BC边上的中点时,S△ABD:S△ABC=1:2;当点D是BC边上任意一点时,S△ABD:S△ABC=BD:BC, 故答案为:1:2,BD:BC; (2)S△BOC:S△ABC=OD:AD, 如图②作OE⊥BC与E,作AF⊥BC与F, ∵OE∥AF, ∴△OED∽△AFD, . ∵, ∴; (3)++=1,理由如下: 由(2)得,,. ∴++=++ = = =1. 29.(2014•凉山州)实验与探究: 三角点阵前n行的点数计算 如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点… 容易发现,10是三角点阵中前4行的点数的和,你能发现300是前多少行的点数的和吗? 如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+…+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系 前n行的点数的和是1+2+3+…+(n﹣2)+(n﹣1)+n,可以发现. 2×[1+2+3+…+(n﹣2)+(n﹣1)+n] =[1+2+3+…+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+…3+2+1] 把两个中括号中的第一项相加,第二项相加…第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到 1+2+3+…+(n﹣2)+(n﹣1)+n=n(n+1) 这就是说,三角点阵中前n项的点数的和是n(n+1) 下列用一元二次方程解决上述问题 设三角点阵中前n行的点数的和为300,则有n(n+1)=300 整理这个方程,得:n2+n﹣600=0 解方程得:n1=24,n2=﹣25 根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300. 请你根据上述材料回答下列问题: (1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理. (2)如果把图中的三角点阵中各行的点数依次换成2、4、6、…、2n、…,你能探究出前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理. 分析: (1)由于第一行有1个点,第二行有2个点…第n行有n个点…,则前n行共有(1+2+3+4+5+…+n )个点,然后求它们的和,前n行共有个点,则=600,然后解方程得到n的值; (2)根据2+4+6+…+2n=2(1+2+3+…+n)=2×个进而得出规律;根据规律可得n(n+1)=600,求n的值即可. 解答: 解:(1)由题意可得:=600, 整理得n2+n﹣1200=0, 此方程无正整数解, 所以,三角点阵中前n行的点数的和不可能是600; (2)由题意可得: 2+4+6+…+2n=2(1+2+3+…+n)=2×=n(n+1); 依题意,得n(n+1)=600, 整理得n2+n﹣600=0, (n+25)(n﹣24)=0, ∴n1=﹣25,n2=24, ∵n为正整数, ∴n=24. 故n的值是24. 查看更多