中考数学压轴题专项训练

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学压轴题专项训练

‎2018年中考数学压轴题专项训练 类型一:与线段长度有关的二次函数问题 ‎1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数的图象交x轴于另一点B。‎ ‎(1)求二次函数的表达式。‎ ‎(2)连接BC,点N是线段BC上的动点,作DN⊥x轴交二次函数的图象于点D,求线段ND长度的最大值。‎ ‎(3)若点为二次函数图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标。‎ ‎2.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)求AD的长;‎ ‎(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.‎ ‎3.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2ax+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.‎ ‎(1)求抛物线的解析式;‎ ‎(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);‎ ‎(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.‎ 类型二:与面积有关的二次函数问题 ‎1.如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0). (1)求该抛物线的解析式; (2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标; (3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;‎ ‎2.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).‎ ‎(1)求二次函数的解析式.‎ ‎(2)求函数图象的顶点坐标及D点的坐标.‎ ‎(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.‎ ‎(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.‎ ‎3.如图,抛物线与轴交于A、B两点,且B(1 , 0)。‎ (1) 求抛物线的解析式和点A的坐标;‎ ‎(2)如图1,点P是直线上的动点,当直线平分∠APB时,求点P的坐标;(3)如图2,已知直线 分别与轴 轴 交于C、F两点。点Q是直线CF下方的抛物线上的一个动点,过点Q作 轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE。问以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由。‎ 类型三:与特殊四边形有关的二次函数问题 ‎1.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.‎ ‎(1)分别求出直线AB和这条抛物线的解析式.‎ ‎(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.‎ ‎(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.‎ ‎2.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.‎ ‎(1)求抛物线的解析式;‎ ‎(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;‎ ‎(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.‎ ‎3.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.‎ ‎(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;‎ ‎(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.‎ ‎(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.‎ ‎4.如图,已知直线与x轴交于点A,与y轴交于点B,C是线段AB的中点.抛物线过O、A两点,且其顶点的纵坐标为. (1)分别写出A、B、C三点的坐标; (2)求抛物线的函数解析式; (3)在抛物线上是否存在点P,使得以O、P、B、C为顶点的四边形是菱形?若存在,求所有满足条件的点P的坐标;若不存在,请说明理由.‎ ‎5.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.‎ ‎(1)求经过A,B,C三点的抛物线的函数表达式;‎ ‎(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;‎ ‎(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.‎ 类型四:特殊三角形有关的二次函数问题 ‎1.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.‎ ‎(1)求点B的坐标;‎ ‎(2)求经过点A、O、B的抛物线的解析式;‎ ‎(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.‎ ‎2.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.‎ ‎(1)求点B的坐标;‎ ‎(2)求抛物线的解析式;‎ ‎(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.‎ ‎3.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.‎ ‎⑴若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;‎ ‎⑵在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;‎ ‎⑶设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.‎ 类型五:与角度有关的二次函数问题 ‎1.已知在平面直角坐标系xoy(如图)中,已知抛物线经过点,对称轴是直线x=1,顶点为B。‎ ‎(1)求这条抛物线的表达式和点B的坐标。‎ ‎(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值。‎ ‎(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在轴上,原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标。‎ ‎2.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;‎ ‎(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.‎ 类型六:与相似有关的二次函数问题 ‎1.如图,已知二次函数y=-x²+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB//X轴,交轴于点D,交该二次函数图象于点B,连接BC。‎ ‎(1)求该二次函数的解析式及点M的坐标。‎ ‎(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求的取值范围。‎ ‎(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)‎ ‎2.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.‎ ‎(1)求该抛物线的解析式;‎ ‎(2)连接PB、PC,求△PBC的面积;‎ ‎(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.‎ ‎3.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.‎ ‎(1)求该抛物线所对应的函数解析式;‎ ‎(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;‎ ‎(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.若∠APE=∠CPE,求证:;‎ 类型七:与图形变换有关的二次函数问题 ‎1.如图,直线与轴、轴分别相交于A、B两点,抛物线经过点B.‎ ‎(1)求该地物线的函数表达式;‎ ‎(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM.设点M的横坐标为,△ABM的面积为S.求S与的函数表达式,并求出S的最大值;‎ ‎(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点. ‎ ‎①写出点的坐标;‎ ‎②将直线绕点A按顺时针方向旋转得到直线,当直线与直线重合时停止旋转.在旋转过程中,直线与线段交于点C.设点B、到直线的距离分别为 ‎、,当最大时,求直线旋转的角度(即∠BAC的度数).‎ ‎2.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.‎ ‎(1)求抛物线的解析式;‎ ‎(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);‎ ‎(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.‎ 类型八:与阅读理解有关的二次函数问题 ‎1.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L与顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系,此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.‎ ‎ (1) 若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,求m,n的值;‎ ‎(2) 若某“路线”L的顶点在反比例函数的图像上,它的“带线” l的解析式为y=2x-4,求此“路线”L的解析式;‎ ‎2.如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.‎ ‎(1)求绳子最低点离地面的距离;‎ ‎(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;‎ ‎(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.‎
查看更多

相关文章

您可能关注的文档