- 2021-05-10 发布 |
- 37.5 KB |
- 31页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
近三年中考真题数学
济南市2017年初三年级学业水平考试 数学试题 一、选择题(本大题共15小题,每小题3分,共45分) 1.(2017济南,1,3分)在实数0,-2,,3中,最大的是( ) A.0 B.-2 C. D.3 2.(2017济南,2,3分)如图所示的几何体,它的左视图是( ) A. B. C. D. 3.(2017济南,3,3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A.0.555×104 B.5.55×104 C.5.55×103 D.55.5×103 4.(2017济南,4,3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是( ) A.40° B.45° C.50° D.60° 5.(2017济南,5,3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是( ) A. B. C. D. 6.(2017济南,6,3分)化简÷的结果是( ) A.a2 B. C. D. 7.(2017济南,7,3分)关于x的方程x2+5x+m=0的一个根为-2,则另一个根是( ) A.-6 B.-3 C.3 D.6 8.(2017济南,8,3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( ) A. B. C. D. 9.(2017济南,9,3分)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A入口进入、从C,D出口离开的概率是( ) A. B. C. D. 10.(2017济南,10,3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是( ) A.12cm B.24cm C.6cm D.12cm 11.(2017济南,11,3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是( ) A.x>-1 B.x>1 C.x>-2 D.x>2 12.(2017济南,12,3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为( ) A. B.3 C. D.4 13.(2017济南,13,3分)如图,正方形ABCD的对角线AC,BD相较于点O,AB=3,E为OC上一点, OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是( ) A. B.2 C. D. 14.(2017济南,14,3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(-2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,-2)的上方,下列结论:①b>0;②2a<b;③2a-b-1<0;④2a+c<0.其中正确结论的个数是( ) A.1 B.2 C.3 D.4 15.(2017济南,15,3分)如图,有一正方形广场ABCD,图形中的线段均表示直行道路, 表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是( ) A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C 二、填空题(本大题共6小题,每小题3分,共18分) 16.(2017济南,16,3分)分解因式:x2-4x+4=__________. 17.(2017济南,17,3分)计算:│-2-4│+()0=________________. 18.(2017济南,18,3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是_________________. 19.(2017济南,19,3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为____________cm. 20.(2017济南,20,3分)如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC的面积为_________________. 21.(2017济南,21,3分)定义:在平面直角坐标系xOy中,把从点P出发沿综或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(-1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1), B(5,-3),C(-1,-5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为______________. 三、解答题(本大题共7小题,共57分) 22.(2017济南,22,7分) (1)先化简,再求值:(a+3)2-(a+2)(a+3),其中a=3 (2)解不等式组: 23.(2017济南,23,7分) (1)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF. (2)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数. 24.(2017济南,24,8分) 某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少? 25.(2017济南,25,8分) 中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示: (1)统计表中的a=________,b=___________,c=____________; (2)请将频数分布表直方图补充完整; (3)求所有被调查学生课外阅读的平均本数; (4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数. 26.(2017济南,26,9分) 如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=(x>0)的图象经过的B. (1)求点B的坐标和反比例函数的关系式; (2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长; (3)如图3,将线段OA延长交y=(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由. 27.(2017济南,27,9分) 某学习小组的学生在学习中遇到了下面的问题: 如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由. 问题探究: (1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程 证明:延长线段EF交CB的延长线于点G. ∵F是BD的中点, ∴BF=DF. ∵∠ACB=∠AED=90°, ∴ED∥CG. ∴∠BGF=∠DEF. 又∵∠BFG=∠DFE, ∴△BGF≌△DEF( ). ∴EF=FG. ∴CF=EF=EG. 请根据以上证明过程,解答下列两个问题: ①在图1中作出证明中所描述的辅助线; ②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择). (2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状. 问题拓展: (3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明. 28.(2017济南,28,9分) 如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点. (1)求点D的坐标和抛物线M1的表达式; (2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标; (3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2. ①设点D平移后的对应点为点D′,当点D′ 恰好在直线AE上时,求m的值; ②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围. 济南市2016年初三年级学业水平考试 数学试题 一、选择题(本大题共15个小题,每小题3分,共45分.在每小题结出的四个选项中,只有一项是符合题目要求的.) 1.5的相反数是( ) A. B.5 C.- D.-5 2.随着高铁的发展,预计2020年济南西客站客流量特达到2150万人,数字2150用科学记数法表示为( ) A.0.215×104 B.2.15×103 C.2.15×104 D.21.5×102 3.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是( ) A. 35° B.30° C. 25° D.20° 第3题图 4.如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是( ) A. B. C. D. 5.下列运算正确的是( ) A. a2+a=2a3 B.a2·a3=a6 C.(-2a3)2=4a6 D.a6÷a2=a3 6.京剧脸谱、剪纸等图案蕴含着简洁美、对称美,下列选取的图片中既是轴对称图形又是中心对称图形的是( ) 7.化简的结果是( ) A. B. C. D.2(x+1) 8.如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如图②所示,以下对图形M的平移方法叙述正确的是 ( ) A.向右平移2个单位,向下平移3个单位 B.向右平移1个单位,向下平移3个单位 C.向右平移1个单位,向下平移4个单位 D.向右平移2个单位,向下平移4个单位 9.如图,若一次函数y=-2x+b的图像交y轴于点A(0,3),则不等式-2x+b>0的解集为( ) A.x> B.x>3 C.x< D.x<3 第9题图 10.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和和小睿选到同一课程的概率是( ) A. B. C. D. 11.若关于x的一元二次方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是( ) A.k<1 B.k≤1 C.k>-1 D.k>1 12.济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为( ) 第12题图 A.47m B.51m C.53m D.54m 13.(2016济南,13,3分)如图,在YABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为( ) A. B.4 C.2 D. 第13题图 14.(2016济南,14,3分)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(-2,-2)都是“平衡点”.当-1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是( ) A.0≤m≤1 B.-3≤m≤1 C.-3≤m≤3 D.-1≤m≤0 15.(2016济南,15,3分)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB-BE向点E运动,同时点Q从点N,以相同的速度沿折线ND-DC-CE向点E运动,设△APQ的面积为S,运动的时间为t秒,则S与t函数关系的大致图象为( ) 第15题图 二、填空题:(本大题共6个小题,每小题3分,共18分.) 16.(2016济南,16,3分)计算:2-1+=_______. 17.(2016济南,17,3分)分解因式:a2-4b2=_______. 18.(2016济南,18,3分)某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是:18,x,15,16,13.若这组数据的平均数为16,则这组数据的中位数是_______. 19.(2016济南,19,3分)若代数式与的值相等,则x=_______. 20.(2016济南,20,3分)如图,半径为2的⊙O在第一象限与直线y=x交于点A,反比例函数y=(x>0)的图象过点A,则k=_________. 第20题图 21.(2016济南,21,3分)如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD的中点.将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落在B′处,折痕为HG,连接HE,则tan∠EHG=_______. 第21题图1 第21题图2 第21题图3 三、解答题(本大题7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 22.(本小题满分7分) (1)先化简再求值:a(1-4a)+(2a+1)(2a-1),其中a=4. (2)解不等式组: 23.(本小题满分7分) (1)如图,在菱形ABCD中,CE=CF. 求证:AE=AF. 第23(1)题图 (2)如图,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数. 第23(2)题图 24.(本小题满分8分) 学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息: 黄瓜的种植成本是1元/kg,售价是1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg. (1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元? 25.(本小题满分8分) 着教育信息化的发展,学生的学习方式日益增多. 教师为了指导学生有幸效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题: 课外利用网络学习的时间问卷调查表 您好!这是一份关于您平均每周课外利用网络学习时间的问卷调查表,请在表格中选择一项符合您学习时间的选项,在其后空格内打“√”,非常感谢您的合作. 第25题图1 第25题图2 (1)本次接受问卷调查的学生共有 人;在扇形统计图中“D”选项所占的百分比为 ; (2)扇形统计图中,“B”选项所对应扇形圆心角为 度; (3)请补全条形统计图; (4)若该校共有1200名学生,请你估计该校学生课外利用网络学习的时间在“A”选项的有多少人? 26.(本小题满分9分) 如图1,□OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4). (1)求反比例函数的关系式和点B的坐标; (2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP. ①求△AOP的面积; ②在□OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由. 第26题图1 第26题图2 27.(本小题满分9分) 在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究. (一)尝试探究 如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F 分別在线段BC、CD上,∠EAF=30°,连接EF. (1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直 接写出∠E′AF=________度,线段BE、EF、FD之间的数量关系为________; (2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线 段BE、EF、FD之间的数量关系,并说明理由. (二)拓展延伸 如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE 绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度. 第27题图2 第27题图1 第27题图3 第27题图4 28.(本小题满分9分) 如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M. (1)求a的值和直线AB的函数表达式; (2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的値; (3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值. 第28题图1 第28题图2 济南市2015年初三年级学业水平考试 数学试题 一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意) 1.(3分)(2015•济南)﹣6的绝对值是( ) A. 6 B. ﹣6 C. ±6 D. 2.(3分)(2015•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为( ) A. 0.109×105 B. 1.09×104 C. 1.09×103 D. 109×102 3.(3分)(2015•济南)如图,OA⊥OB,∠1=35°,则∠2的度数是( ) A. 35° B. 45° C. 55° D. 70° 4.(3分)(2015•济南)下列运算不正确的是( ) A. a2•a=a3 B. (a3)2=a6 C. (2a2)2=4a4 D. a2÷a2=a 5.(3分)(2015•济南)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是( ) A. B. C. D. 6.(3分)(2015•济南)若代数式4x﹣5与 的值相等,则x的值是( ) A. 1 B. C. D. 2 7.(3分)(2015•济南)下列图标既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 8.(3分)(2015•济南)济南某中学足球队的18名队员的年龄如表所示: 年龄(单位:岁) 12 13 14 15 人数 3 5 6 4 这18名队员年龄的众数和中位数分别是( ) A. 13岁,14岁 B. 14岁,14岁 C. 14岁,13岁 D. 14岁,15岁 9.(3分)(2015•济南)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,在向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为( ) A. (4,3) B. (2,4) C. (3,1) D. (2,5) 10.(3分)(2015•济南)化简﹣的结果是( ) A. m+3 B. m﹣3 C. D. 11.(3分)(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( ) A. x>﹣2 B. x>0 C. x>1 D. x<1 12.(3分)(2015•济南)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为( ) A. 10cm B. 13cm C. 14cm D. 16cm 13.(3分)(2015•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、CD于M、N两点.若AM=2,则线段ON的长为( ) A. B. C. 1 D. 14.(3分)(2015•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是( ) A. (0,0) B. (0,2) C. (2,﹣4) D. (﹣4,2) 15.(3分)(2015•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( ) A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣ 二、填空题(共6小题,每小题3分,满分18分) 16.(3分)(2015•济南)分解因式:xy+x= . 17.(3分)(2015•济南)计算: +(﹣3)0= . 18.(3分)(2015•济南)如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为 (结果保留π). 19.(3分)(2015•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是 . 20.(3分)(2015•济南)如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y= (x<0)的图象上,则k= . 21.(3分)(2015•济南)如图,在菱形ABCD中,AB=6,∠DAB=60° ,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2 ;③tan∠DCF= ;④△ABF的面积为 .其中一定成立的是 (把所有正确结论的序号都填在横线上). 三、解答题(共7小题,满分57分) 22.(7分)(2015•济南)(1)化简:(x+2)2+x(x+3) (2)解不等式组: . 23.(7分)(2015•济南)(1)如图,在矩形ABCD中,BF=CE,求证:AE=DF; (2)如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数. 24.(8分)(2015•济南)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度. 25.(8分)(2015•济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他” 四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题: 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计 m 1 (1)计算m= ; (2)在扇形统计图中,“其他”类所占的百分比为 ; (3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率. 26.(9分)(2015•济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=mx (x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D. (1)求m的值和直线AB的函数关系式; (2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒. ①设△OPQ的面积为S,写出S与t的函数关系式; ②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由. 27.(9分)(2015•济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D. (1)直接写出∠NDE的度数; (2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由; (3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长. 28.(9分)(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C. (1)求抛物线的函数表达式; (2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标; (3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为 上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值. 济南市2014年初三年级学业水平考试 数 学 试 题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试卷共8页,满分为120分.考试时间为120分钟.答题前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器. 第Ⅰ卷(选择题 共45分) 注意事项: 第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮檫干净后,再选涂其他答案标号.答案写在试卷上无效. 一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.4的算术平方根是 A.2 B.-2 C.±2 D.16 2. 如图,点O在直线AB上,若,则的度数是 A. B. C. D. 3. 下列运算中,结果是的是 A. B. C. D. 4.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为 A. B. C. D. 5. 下列图案既是轴对称图形又是中心对称图形的是 A. B. C. D. 正面 第6题 6. 如图,一个几何体由5个大小相同、棱长为1的正方体搭成, 下列关于这个几何体的说法正确的是 A. 主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是4 7.化简 的结果是 A. B. C. D. 8.下列命题中,真命题是 A.两对角线相等的四边形是矩形 B.两对角线互相平分的四边形是平行四边形 C.两对角线互相垂直的四边形是菱形 D.两对角线相等的四边形是等腰梯形 9.若一次函数的函数值随的增大而增大,则 A. B. C. D. A B C D E F 第10题图 10. 在□中,延长AB到E,使BE=AB,连接DE交BC 于F,则下列结论不一定成立的是 A. B. C. D. A B O O' x y 11. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为 A. B. C. D.. 12. 如图,直线与轴,轴分别交于两点, 把沿着直线翻折后得到,则点的坐标是 A B C D E .O 第13题图 A. B. C. D. 13. 如图,的半径为1,是的内接等边三角形, 点D,E在圆上,四边形为矩形,这个矩形的面积是 A.2 B. C. D. 14.现定义一种变换:对于一个由有限个数组成的序列,将其中的每个数换成该数在中出现的次数,可得到一个新序列.例如序列:(4,2,3,4,2),通过变换可得到新序列:(2,2,1,2,2).若可以为任意序列,则下面的序列可以作为的是 1 B O x y 4 A.(1,2,1,2,2) B.(2,2,2,3,3) C.(1,1,2,2,3) D.(1,2,1,1,2) 15. 二次函数的图象如图,对称轴为. 若关于的一元二次方程(为实数) 在的范围内有解,则的取值范围是 A. B. C. D. 第Ⅱ卷(非选择题 共75分) 二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上) 16.________. 17. 分解因式:________. 18. 在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为____________. 19. 若代数式和的值相等,则 . 20.如图,将边长为12的正方形ABCD是沿其对角线AC剪开,再把沿着AD方向平移,得到,当两个三角形重叠的面积为32时,它移动的距离等于________D C A O x y B 第21题图 A D C B A D A’ B’ C C’ 第20题图 21.如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为________. 三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) A B C O 第23题(2)图 22. (本小题满分7分) (1) 化简:. (2)解不等式组:. 23.(本小题满分7分) (1)如图,在四边形是矩形,点E是AD的中点,求证:. A B C D E 第23题(1)图 (2)如图,AB与相切于C,,的半径为6,AB=16,求OA的长. 24.(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张? 25. (本小题满分8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示: 0 时间(时) 人数 10 20 30 40 12 30 18 0.5 1 2 劳动时间(时) 频数 (人数) 频率 0.5 12 0.12 1 30 0.3 1.5 0.4 2 18 合计 1 (1)统计表中的 , , ; (2)被调查同学劳动时间的中位数是 时; (3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间. 26.(本小题满分9分)如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D. (1)求的值; (2)求的值及直线AC的解析式; (3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值. 第26题图1 A B C D O x y 27. (本小题满分9分)如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,. (1) ,正方形的边长= ; (2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上. ①写出与的函数关系并给出证明; ②若,求菱形的边长. A E’ D’ B’ C’ G’ A B C D E F G 28. (本小题满分9分)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D. (1)求平移后抛物线的解析式并直接写出阴影部分的面积; A B C D x y O 第28题图1 P A B C M N x y O 第28题图2 (2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求: ①为何值时为等腰三角形; ②为何值时线段PN的长度最小,最小长度是查看更多