中考冲刺阅读理解型问题知识讲解基础

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考冲刺阅读理解型问题知识讲解基础

中考冲刺:阅读理解型问题—知识讲解(基础)‎ ‎【中考展望】‎ ‎ 阅读理解型问题在近几年的全国中考试题中频频“亮相”,应该特别引起我们的重视. 它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等.同时,更能够综合考查同学们的数学意识和数学综合应用能力.‎ ‎【方法点拨】‎ 题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.‎ 解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.‎ 解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.‎ ‎ 阅读理解题一般可分为如下几种类型:‎ ‎ (1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;‎ ‎ (2)判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;‎ ‎ (3)迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.‎ ‎【典型例题】‎ 类型一、阅读试题提供新定义、新定理,解决新问题 ‎ ‎1.阅读材料: 例:说明代数式的几何意义,并求它的最小值. 解:=,‎ 如图,建立平面直角坐标系,点P(x,0)是x轴上一点,‎ 则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值. 设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角△A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3. 根据以上阅读材料,解答下列问题: (1)代数式 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标) (2)代数式的最小值为 .‎ ‎【思路点拨】‎ ‎(1)先把原式化为的形式,再根据题中所给的例子即可得出结论; (2)先把原式化为的形式,故得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,然后在坐标系内描出各点,利用勾股定理得出结论即可.‎ ‎【答案与解析】‎ 解:(1)∵原式化为的形式, ∴代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和, 故答案为(2,3); (2)∵原式化为的形式, ∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和, 如图所示:设点A关于x轴的对称点为A′,则PA=PA′, ∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短, ∴PA′+PB的最小值为线段A′B的长度, ∵A(0,7),B(6,1) ∴A′(0,-7),A′C=6,BC=8, ∴A′B==10, 故答案为:10.‎ ‎【总结升华】‎ 本题考查的是轴对称——最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.‎ 类型二、阅读试题信息,归纳总结提炼数学思想方法 ‎2.阅读材料: (1)对于任意两个数a、b的大小比较,有下面的方法: 当a-b>0时,一定有a>b; ‎ ‎ 当a-b=0时,一定有a=b; 当a-b<0时,一定有a<b. 反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”. (2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较: ∵a2-b2=(a+b)(a-b),a+b>0, ∴(a2-b2)与(a-b)的符号相同. 当a2-b2>0时,a-b>0,得a>b; 当a2-b2=0时,a-b=0,得a=b; 当a2-b2<0时,a-b<0,得a<b. 解决下列实际问题: (1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题: ①W1= (用x、y的式子表示); W2= (用x、y的式子表示); ②请你分析谁用的纸面积更大. (2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是‎3km、‎4km(即AC=‎3km,BE=‎4km),AB=xkm,现设计两种方案: 方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP. 方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP. ①在方案一中,a1= km(用含x的式子表示); ②在方案二中,a2= km(用含x的式子表示); ③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.‎ ‎【思路点拨】‎ ‎(1)①根据题意得出3x+7y和2x+8y,即得出答案;②求出W1-W2=x-y,根据x和y的大小比较即可; (2)①把AB和AP的值代入即可;②过B作BM⊥AC于M,求出AM,根据勾股定理求出BM.再根据勾股定理求出BA′,即可得出答案; ③求出a12-a22=6x-39,分别求出6x-39>0,6x-39=0,6x-39<0,即可得出答案.‎ ‎【答案与解析】‎ ‎(1)解:①W1=3x+7y,W2=2x+8y, 故答案为:3x+7y,2x+8y.         ②解:W1-W2‎ ‎=(3x+7y)-(2x+8y)=x-y, ∵x>y, ∴x-y>0, ∴W1-W2>0, 得W1>W2, 所以张丽同学用纸的总面积更大. ‎ ‎(2)①解:a1=AB+AP=x+3, 故答案为:x+3.           ‎ ‎②解:过B作BM⊥AC于M, 则AM=4-3=1, 在△ABM中,由勾股定理得:BM2=AB2-12=x2-1, 在△A′MB中,由勾股定理得:AP+BP=A′B=, 故答案为:.‎ ‎③解:a12-a22=(x+3)2-()2=x2+6x+9-(x2+48)=6x-39, 当a12-a22>0(即a1-a2>0,a1>a2)时,6x-39>0,解得x>6.5, 当a12-a22=0(即a1-a2=0,a1=a2)时,6x-39=0,解得x=6.5, 当a12-a22<0(即a1-a2<0,a1<a2)时,6x-39<0,解得x<6.5, 综上所述, 当x>6.5时,选择方案二,输气管道较短, 当x=6.5时,两种方案一样, 当0<x<6.5时,选择方案一,输气管道较短.‎ ‎【总结升华】‎ 本题考查了勾股定理,轴对称——最短路线问题,整式的运算等知识点的应用,通过做此题培养了学生的计算能力和阅读能力,题目具有一定的代表性,是一道比较好的题目.‎ 举一反三:‎ ‎【变式】如图所示,正方形ABCD和正方形EFGH的边长分别为和,对角线BD、FH都在直线上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O在直线 上平移时,正方形 EFGH也随之平移,在平移时正方形EFGH的形状、大小没有改变.‎ ‎(1)计算:O1D=_______,O‎2F=______;‎ ‎(2)当中心O2在直线 上平移到两个正方形只有一个公共点时,中心距O1 O2 =_________.‎ ‎(3)随着中心 O2在直线 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)‎ ‎【答案】‎ ‎(1)O1D=2,O‎2F=1;‎ ‎(2)O1 O2 =3;‎ ‎(3)当O1 O2>3或0≤O1 O2<1时,两个正方形无公共点;‎ 当O1 O2=1时,两个正方形有无数个公共点;‎ 当1<O1 O2<3时,两个正方形有2个公共点.‎ 类型三、阅读相关信息,通过归纳探索,发现规律,得出结论 ‎3.在学习轴对称的时候,老师让同学们思考课本中的探究题. 如图(1),要在燃气管道上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短? 你可以在l上找几个点试一试,能发现什么规律? 聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:‎ ‎ ①作点B关于直线的对称点B′. ②连接AB′交直线于点P,则点P为所求. 请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE的周长最小. (1)在图中作出点P(保留作图痕迹,不写作法). (2)请直接写出△PDE周长的最小值: .‎ ‎【思路点拨】‎ ‎(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求; (2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.‎ ‎【答案与解析】‎ 解:(1)如图,作D点关于BC的对称点D′,连接D′E,与BC交于点P, P点即为所求; ‎ ‎ (2)∵点D、E分别是AB、AC边的中点, ∴DE为△ABC中位线, ∵BC=6,BC边上的高为4, ∴DE=3,DD′=4, ∴D′E==5, ∴△PDE周长的最小值为:DE+D′E=3+5=8, 故答案为:8.‎ ‎【总结升华】‎ 此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值是解题关键.‎ 举一反三:‎ ‎【变式】阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:‎ ‎1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…=?‎ 观察下面三个特殊的等式:‎ 将这三个等式的两边相加,可以得到1×2+2×3+3×4=‎ 读完这段材料,请你思考后回答:‎ ‎⑴ __________________;‎ ‎⑵ ______________________;‎ ‎⑶ ___________________.‎ ‎(只需写出结果,不必写中间的过程)‎ ‎ 【答案】‎ ‎⑴343400(或)‎ 每相邻两个自然数相乘再求和时可以发现结果总是,但当每相邻三个自然数相乘再求和时就成为了.‎ 类型四、阅读试题信息,借助已有数学思想方法解决新问题 ‎4.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧. (1)当正方形的顶点F恰好落在对角线AC上时,求BE的长; (2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围. ‎ ‎【思路点拨】‎ ‎(1)首先设正方形BEFG的边长为x,易得△AGF∽△ABC,根据相似三角形的对应边成比例,即可求得BE的长; (2)首先利用△MEC∽△ABC与勾股定理,求得B′M,DM与B′D的平方,然后分别从若∠DB′M=90°,则DM2=B′M2+B′D2,若∠DB′M=90°,则DM2=B′M2+B′D2,若∠B′DM=90°,则B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案; (3)分别从当0≤t≤时,当<t≤2时,当2<t≤时,当<t≤4时去分析求解即可求得答案.‎ ‎【答案与解析】‎ 解:(1)如图①, ‎ 设正方形BEFG的边长为x, 则BE=FG=BG=x, ∵AB=3,BC=6, ∴AG=AB-BG=3-x, ∵GF∥BE, ∴△AGF∽△ABC, ∴, 即 ‎, 解得:x=2, 即BE=2. (2)存在满足条件的t, 理由:如图②,过点D作DH⊥BC于H, 则BH=AD=2,DH=AB=3, 由题意得:BB′=HE=t,HB′=|t-2|,EC=4-t, ∵EF∥AB, ∴△MEC∽△ABC, ∴,即, ∴ME=2-t, 在Rt△B′ME中,B′M2=ME2+B′E2=22+(2-t)2=t2-2t+8, 在Rt△DHB′中,B′D2=DH2+B′H2=32+(t-2)2=t2-4t+13, 过点M作MN⊥DH于N, 则MN=HE=t,NH=ME=2-t, ∴DN=DH-NH=3-(2-t)=t+1, 在Rt△DMN中,DM2=DN2+MN2=t2+t+1, (Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2, 即t2+t+1=(t2-2t+8)+(t2-4t+13), 解得:t=, (Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2, 即t2-4t+13=(t2-2t+8)+(t2+t+1), 解得:t1=-3+,t2=-3-(舍去), ∴t=-3+; (Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2, 即:t2-2t+8=(t2-4t+13)+(t2+t+1), 此方程无解, 综上所述,当t=或-3+时,△B′DM是直角三角形; ‎ ‎ (3)①如图③,当F在CD上时,EF:DH=CE:CH, 即2:3=CE:4, ∴CE=, ∴t=BB′=BC-B′E-EC=6-2-=, ∵ME=2-t, ∴FM=t, 当0≤t≤时,S=S△FMN=×t×t=t2, ②如图④,当G在AC上时,t=2, ∵EK=EC•tan∠DCB=EC•=(4-t)=3-t, ∴FK=2-EK=t-1, ∵NL=AD=, ∴FL=t-, ∴当<t≤2时,S=S△FMN-S△FKL=t2-(t-)(t-1)=-t2+t-; ③如图⑤,当G在CD上时,B′C:CH=B′G:DH, 即B′C:4=2:3, 解得:B′C=, ∴EC=4-t=B′C-2=, ∴t=, ∵B′N=B′C=(6-t)=3-t, ∵GN=GB′-B′N=t-1, ‎ ‎ ∴当2<t≤时,S=S梯形GNMF-S△FKL=×2×(t-1+t)-(t-)(t-1)=-t2+2t-, ④如图⑥,当<t≤4时, ∵B′L=B′C=(6-t),EK=EC=(4-t),B′N=B′C=(6-t)EM=EC=(4-t),‎ ‎ S=S梯形MNLK=S梯形B′EKL-S梯形B′EMN=-t+. 综上所述: 当0≤t≤时,S=t2, 当<t≤2时,S=-t2+t-; 当2<t≤时,S=-t2+2t-, 当<t≤4时,S=-t+.‎ ‎【总结升华】‎ 此题考查了相似三角形的判定与性质、正方形的性质、直角梯形的性质以及勾股定理等知识.此题难度较大,注意数形结合思想、方程思想与分类讨论思想的应用,注意辅助线的作法.‎ ‎5.阅读理解 如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B‎1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角. 小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B‎1A1C的平分线A1B2折叠,此时点B1与点C重合. 探究发现: (1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? (填“是”或“不是”). (2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 ‎ ‎. 应用提升 (3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角. 请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角. ‎ ‎【思路点拨】‎ ‎(1)在小丽展示的情形二中,如图3,根据三角形的外角定理、折叠的性质推知∠B=2∠C; (2)根据折叠的性质、根据三角形的外角定理知∠A‎1A2B2=∠C+∠A2B‎2C=2∠C;根据四边形的外角定理知∠BAC+2∠B‎-2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C; (3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是88°、88°.‎ ‎【答案与解析】‎ 解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角; 理由如下:小丽展示的情形二中,如图3, ∵沿∠BAC的平分线AB1折叠, ∴∠B=∠AA1B1; 又∵将余下部分沿∠B‎1A1C的平分线A1B2折叠,此时点B1与点C重合, ∴∠A1B‎1C=∠C; ∵∠AA1B1=∠C+∠A1B‎1C(外角定理), ∴∠B=2∠C; 故答案是:是; (2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B‎1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B‎2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角. 证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B‎2C,∠A1 B‎1C=∠A‎1A2B2, ∴根据三角形的外角定理知,∠A‎1A2B2=∠C+∠A2B‎2C=2∠C; ∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B‎1C=∠BAC+2∠B‎-2C ‎=180°, 根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°, ∴∠B=3∠C; 由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角; 由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角; 由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角; 故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C; (3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角, ∴∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角, ∴如果一个三角形的最小角是4°,‎ 三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.‎ ‎【总结升华】‎ 本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质,难度较大.‎ 举一反三:‎ ‎【高清课堂:阅读理解型问题 例3】‎ ‎【变式】阅读以下短文,然后解决下列问题:‎ 如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF即为△ABC的“友好矩形”. 显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.‎ ‎(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;‎ ‎(2) 如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;‎ ‎(3) 若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.‎ ‎【答案】‎ ‎(1) 如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”. ‎ ‎ (2) 此时共有2个友好矩形,如图中的矩形BCAD、ABEF.易知,矩形BCAD、ABEF的面积都等于△ABC面积的2倍,∴△ABC的“友好矩形”的面积相等. ‎ ‎(3) 此时共有3个友好矩形,如图的矩形BCDE、CAFG及ABHK,其中矩形ABHK的周长最小 . ‎ 证明如下:‎ 易知,这三个矩形的面积相等,令其为S. 设矩形BCDE、CAFG及ABHK的周长分别为L1,L2,L3,‎ ‎△ABC的边长BC=a,CA=b,AB=c,‎ 则L1=+‎2a,L2=+2b,L3=+‎2c .‎ ‎∴L1-L2=(+2a)-(+2b)=2(a-b),‎ 而ab>S,a>b,‎ ‎∴L1-L2>0,即L1>L2 .‎ 同理可得,L2>L3 .‎ ‎∴L3最小,即矩形ABHK的周长最小. ‎
查看更多

相关文章

您可能关注的文档