- 2021-05-10 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020年中考数学真题汇编 图形的相似
中考数学真题汇编:图形的相似 一、选择题 1.已知 ,下列变形错误的是( ) A. B. C. D. 【答案】B 2.已知 与 相似,且相似比为 ,则 与 的面积比( ) A. B. C. D. 【答案】D 3.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 , 和 ,另一个三角形的最短边长为2.5 cm,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cm D. 5cm 【答案】C 4.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的 后得到线段CD,则点A的对应点C的坐标为( ) A. (5,1) B. (4,3) C. (3,4) D. (1,5) 【答案】C 11 5.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为( ) A. B. C. D. 【答案】D 6.在平面直角坐标系中,点 是线段 上一点,以原点 为位似中心把 放大到原来的两倍,则点 的对应点的坐标为( ) A. B. 或 C. D. 或 【答案】B 7.如图,点 在线段 上,在 的同侧作等腰 和等腰 , 与 、 分别交于点 、 .对于下列结论:① ;② ;③ .其中正确的是( ) ∵∠BEA=∠CDA ∠PME=∠AMD ∴P、E、D、A四点共圆 ∴∠APD=AED=90° ∵∠CAE=180°-∠BAC-∠EAD=90° ∴△CAP∽△CMA ∴AC2=CP•CM ∵AC= AB ∴2CB2=CP•CM 所以③正确 11 A. ①②③ B. ① C. ①② D. ②③ 【答案】A 8.如图,将 沿 边上的中线 平移到 的位置,已知 的面积为9,阴影部分三角形的面积为4.若 ,则 等于( ) A. 2 B. 3 C. D. 【答案】A 9.学校门口的栏杆如图所示,栏杆从水平位置 绕 点旋转到 位置,已知 , ,垂足分别为 , , , , ,则栏杆 端应下降的垂直距离 为( ) A. B. C. D. 【答案】C 11 10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1 , S2 , ( ) A. 若 ,则 B. 若 ,则 C. 若 ,则 D. 若 ,则 【答案】D 11.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )。 A. B. 2 C. D. 4 【答案】A 12.如图,已知AB是 的直径,点P在BA的延长线上,PD与 相切于点D , 过点B作PD的垂线交PD的延长线于点C , 若 的半径为4, ,则PA的长为( ) 11 A. 4 B. C. 3 D. 2.5 【答案】A 二、填空题 13.如图,△ABC中,点D、E分别在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为________. 【答案】1:9 14.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________. 【答案】2 15.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数________. 【答案】3或1.2 16.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE= ,∠EAF=45°,则AF的长为________. 【答案】 11 17.如图,E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC、GA、GF,已知AG⊥GF,AC= ,则AB的长为________. 【答案】2 18.在Rt△ABC中∠C=90°,AD平分∠CAB,BE平分∠CBA,AD、BE相交于点F,且AF=4,EF= ,则AC=________. 【答案】 19.如图,在矩形 中, ,点 为线段 上的动点,将 沿 折叠,使点 落在矩形内点 处.下列结论正确的是________. (写出所有正确结论的序号) ①当 为线段 中点时, ; ②当 为线段 中点时, ; ③当 三点共线时, ; ④当 三点共线时, . 【答案】①③④ 11 20.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=________. 【答案】 三、解答题 21.为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02) 【答案】解:如图, ∵FM//BD,∴∠FED=∠MFE=45°, ∵∠DEF=∠BEA,∴∠AEB=45°, ∴∠FEA=90°, ∵∠FDE=∠ABE=90°, ∴△FDE∽△ABE,∴ , 在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°= , 11 ∴ , ∴AB=1.8×10.02≈18, 答:旗杆AB高约18米. 22.如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设 。 (1)求证:AE=BF; (2)连接BE,DF,设∠EDF= ,∠EBF= 求证: (3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为S1和S2 , 求 的最大值. 【答案】(1)因为四边形ABCD是正方形,所以∠BAF+∠EAD=90°,又因为DE⊥AG,所以∠EAD+∠ADE=90°, 所以∠ADE=∠BAF, 又因为BF⊥AG, 所以∠DEA=∠AFB=90°, 又因为AD=AB 所以Rt△DAE≌Rt△ABF, 所以AE=BF (2)易知Rt△BFG∽Rt△DEA,所以 在Rt△DEF和Rt△BEF中,tanα= ,tanβ= 所以ktanβ= = = = =tanα 所以 (3)设正方形ABCD的边长为1,则BG=k,所以△ABG的面积等于 k因为△ABD的面积等于 又因为 =k,所以S1= 所以S2=1- k- = 11 所以 =-k2+k+1= ≤ 因为0<k<1,所以当k= ,即点G为BC中点时, 有最大值 23.如图,以 的直角边 为直径作 交斜边 于点 ,过圆心 作 ,交 于点 ,连接 . (1)判断 与 的位置关系并说明理由; (2)求证: ; (3)若 , ,求 的长. 【答案】(1)解:DE是圆O的切线证明:连接OD ∵OE∥AC ∴∠1=∠3,∠2=∠A ∵OA=OD ∴∠1=∠A ∴∠2=∠3 在△BOE和△DOE中 OE=OD,∠2=∠3,OE=OE ∴△BOE≌△DOE(SAS) ∴∠ODE=∠OBE=90° ∴OD⊥DE ∴DE是圆O的切线 (2)解:证明:连接BD∵AB是直径 ∴∠BDC=∠ADB=∠ABC=90° ∵OE∥AC,O是AB的中点 11 ∴OE是△ABC的中位线 ∴AC=2OE ∵∠BDC=∠ABC,∠C=∠C ∴△ABC∽△BDC ∴ ∴BC2=2CD•OE ∵BC=2DE, ∴(2DE)2=2CD•OE ∴ (3)解:∵ 设:BD=4x,CD=3x ∵在△BDC中, , ∴BC=2DE=5 ∴(4x)2+(3x)2=25 解之:x=1,x=-1(舍去) ∴BD=4 ∵∠ABD=∠C ∴AD=BD•tan∠ABD= 24.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形. (1)已知△ABC是比例三角形,AB=2,BC=3.请直接写出所有满足条件的AC的长; (2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC, ∠BAC=∠ADC.求证:△ABC是比例三角形; (3)如图2,在(2)的条件下,当∠ADC=90°时,求 的值。 【答案】(1)或 或 . (2)证明:∵AD∥BC, ∴∠ACB =∠CAD, 又∵∠BAC=∠ADC, 11 ∴△ABC∽△DCA, ∴ = , 即CA2=BC·AD, 又∵AD∥BC, ∴∠ADB=∠CBD, ∵BD平分∠ABC, ∴∠ABD=∠CBD, ∴∠ADB=∠ABD, ∴AB=AD, ∴CA2=BC·AB, ∴△ABC是比例三角形. (3)解:如图,过点A作AH⊥BD于点H, ∵AB=AD, ∴BH= BD, ∴AD∥BC,∠ADC=90°, ∴∠BHA=∠BCD=90°, 又∵∠ABH=∠DBC, ∴△ABH∽△DBC, ∴ = , ∴AB·BC=DB·BH, ∴AB·BC= BD2, 又∵AB·BC=AC2, ∴ BD2=AC2, ∴ = . 11查看更多