- 2021-05-10 发布 |
- 37.5 KB |
- 50页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学动点问题专题讲解
中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线 上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决 问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动 点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空 间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查 学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图 形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中 找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心 的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、 实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、 解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲: (1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想 等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的 动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学 一、应用勾股定理建立函数解析式 例 1(2000 年·上海)如图 1,在半径为 6,圆心角为 90°的扇形 OAB 的弧 AB 上,有一个动点 P,PH ⊥OA,垂足为 H,△OPH 的重心为 G. (1)当点 P 在弧 AB 上运动时,线段 GO、GP、GH 中,有无长度保持不变的线段?如果有,请指出这样 的线段,并求出相应的长度. (2)设 PH x ,GP y ,求 y 关于 x 的函数解析式,并写出函数的定义域(即自变量 x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段 PH 的长. 二、应用比例式建立函数解析式 HM N G P O A B 图 1 x y 例 2(2006 年·山东)如图 2,在△ABC 中,AB=AC=1,点 D,E 在直线 BC 上运动.设 BD= ,x CE= y . (1)如果∠BAC=30°,∠DAE=105°,试确定 y 与 x 之间的函数解析式; (2)如果∠BAC 的度数为 ,∠DAE 的度数为 ,当 , 满足怎样的关系式时,(1)中 y 与 x 之间 的函数解析式还成立?试说明理由. 例 3(2005 年·上海)如图 3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点 O 是边 AC 上的一个动点, 以点 O 为圆心作半圆,与边 AB 相切于点 D,交线段 OC 于点 E.作 EP⊥ED,交射线 AB 于点 P,交射线 CB 于 点 F. (1)求证: △ADE∽△AEP. (2)设 OA= x ,AP= y ,求 y 关于 x 的函数解析式,并写出它的 定义域. (3)当 BF=1 时,求线段 AP 的长. 三、应用求图形面积的方法建立函数关系式 例 4(2004 年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC= 22 ,⊙A 的半径为 1.若点 O 在 BC A ED CB 图 2 ● P D E AC B 3(2) O F A F A B C E D 边上运动(与点 B、C 不重合),设 BO= x ,△AOC 的面积为 y . (1)求 y 关于 x 的函数解析式,并写出函数的定义域. (2)以点 O 为圆心,BO 长为半径作圆 O,求当⊙O 与⊙A 相切时, △AOC 的面积. 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关 系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题 一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四 边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题 方法、关键给以点拨。 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09 年徐汇区)如图, ABC 中, 10 ACAB , 12BC ,点 D 在边 BC 上,且 4BD , 以点 D 为顶点作 BEDF ,分别交边 AB 于点 E ,交射线CA 于点 F . (1)当 6AE 时,求 AF 的长; (2)当以点 C 为圆心CF 长为半径的⊙C 和以点 A 为圆心 AE 长为半径的⊙ A 相切时, 求 BE 的长; (3)当以边 AC 为直径的⊙O 与线段 DE 相切时,求 BE 的长. [题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例六,典型的一 线三角(三等角)问题,试题在原题的基础上改编出第一小题, 当 E 点在 AB 边上运动时,渗透入圆与圆的位置关系(相切 问题)的存在性的研究形成了第二小题,加入直线与圆的位置 关系(相切问题)的存在性的研究形成了第三小题.区分度测 量点在直线与圆的位置关系和圆与圆的位置关系,从而利用 方程思想来求解. [区分度性小题处理手法] 1.直线与圆的相切的存在性的处理方法:利用 d=r 建立方程. 2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用 d=R±r( rR )建立方程. 3.解题的关键是用含 x 的代数式表示出相关的线段. [ 略解] A B C DE O l A′ A B C DE O l F 解:(1) 证明 CDF ∽ EBD ∴ BE CD BD CF ,代入数据得 8CF ,∴AF=2 (2) 设 BE= x ,则 ,10 ACd ,10 xAE 利用(1)的方法 xCF 32 , 相切时分外切和内切两种情况考虑: 外切, xx 321010 , 24x ; 内切, xx 321010 , 17210 x . 100 x ∴当⊙C 和⊙ A 相切时, BE 的长为 24 或 17210 . (3)当以边 AC 为直径的⊙O 与线段 DE 相切时, 3 20BE . 类题 ⑴一个动点:09 杨浦 25 题(四月、五月)、09 静安 25 题、 ⑵两个动点:09 闸北 25 题、09 松江 25 题、09 卢湾 25 题、09 青浦 25 题. (二)线动问题 在矩形 ABCD 中,AB=3,点 O 在对角线 AC 上,直线 l 过点 O,且与 AC 垂直交 AD 于点 E.(1) 若直线 l 过点 B,把△ABE 沿直线 l 翻折,点 A 与矩形 ABCD 的对称中心 A'重合,求 BC 的长; (2)若直线 l 与 AB 相交于点 F,且 AO= 4 1 AC,设 AD 的长为 x ,五边 形 BCDEF 的面积为 S.①求 S 关于 x 的函数关系式,并指出 x 的取值范 围; ②探索:是否存在这样的 x ,以 A 为圆心,以 x 4 3 长为半径的圆与 直线 l 相切,若存在,请求出 x 的值;若不存在,请说明理由. [题型背景和区分度测量点] 本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第 一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线l 沿 AB 边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆 的位置关系(相切问题)的存在性的研究形成了区分度测量点二. [区分度性小题处理手法] 1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规 则图形用割补法. 2.直线与圆的相切的存在性的处理方法:利用 d=r 建立方程. 3.解题的关键是用含 x 的代数式表示出相关的线段. [ 略解] (1)∵A’是矩形 ABCD 的对称中心∴A’B=AA’= 2 1 AC ∵AB=A’B,AB=3∴AC=6 33BC (2)① 92 xAC , 94 1 2 xAO , )9(12 1 2 xAF , x xAE 4 92 ∴ AF2 1 AES AEF x x 96 )9( 22 , x xxS 96 )9(3 22 x xxS 96 81270 24 ( 333 x ) ②若圆 A 与直线 l 相切,则 94 1 4 3 2 xx , 01 x (舍去), 5 8 2 x ∵ 35 8 2 x ∴不存在这样的 x ,使圆 A 与直线 l 相切. [类题]09 虹口 25 题. (三)面动问题 如图,在 ABC 中, 6,5 BCACAB , D 、 E 分别是边 AB 、 AC 上 的两个动点( D 不与 A 、B 重合),且保持 BCDE ∥ ,以 DE 为边,在点 A 的异侧作正方形 DEFG . (1)试求 ABC 的面积; (2)当边 FG 与 BC 重合时,求正方形 DEFG 的边长; (3)设 xAD , ABC 与正方形 DEFG 重叠部分的面积为 y ,试求 y 关 于 x 的函数关系式,并写出定义域; (4)当 BDG 是等腰三角形时,请直接写出 AD 的长. [题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例七,典型的共角相似三角形问题,试题为了形成坡度, 在原题的基础上改编出求等腰三角形面积的第一小题,当 D 点在 AB 边上运动时,正方形 DEFG 整体 动起来,GF 边落在 BC 边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高= 对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段 AD 的关系的函数解析式形成了第 三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二. [区分度性小题处理手法] 图3-5 图3-4 图3-3 图3-2 图3-1 K F G E K F G E F G E U K F G E F G E C A A C A C A C A C B D B D B D B D B D 1.找到三角形与正方形的重叠部分是解决本题的关键,如上图 3-1、3-2 重叠部分分别为正方形 和矩形包括两种情况. 2.正确的抓住等腰三角形的腰与底的分类,如上图 3-3、3-4、3-5 用方程思想解决. 3.解题的关键是用含 x 的代数式表示出相关的线段. [ 略解] 解:(1) 12ABCS . F G E C A B D (2)令此时正方形的边长为 a ,则 4 4 6 aa ,解得 5 12a . (3)当 20 x 时, 2 2 25 36 5 6 xxy , 当 52 x 时, 2 25 24 5 2455 4 5 6 xxxxy . (4) 7 20,11 25,73 125AD . [类题] 改编自 09 奉贤 3 月考 25 题,将条件(2)“当点 M、N 分别在边 BA、CA 上时”,去掉,同 时加到第(3)题中. 已知:在△ABC 中,AB=AC,∠B=30º,BC=6,点 D 在边 BC 上,点 E 在线段 DC 上,DE=3,△DEF 是等边三角形,边 DF、EF 与边 BA、CA 分别相交于点 M、N. (1)求证:△BDM∽△CEN; (2)设 BD= x ,△ABC 与△DEF 重叠部分的面积为 y ,求 y 关于 x 的函数解析式,并写出定义域. (3)当点 M、N 分别在边 BA、CA 上时,是否存在点 D,使以 M 为圆心, BM 为半径的圆与直线 EF 相切, 如果存在,请求出 x 的值;如不存在,请说明理由. 例 1:已知⊙O 的弦 AB 的长等于⊙O 的半径,点 C 在⊙O 上变化(不与 A、B)重合,求∠ACB 的大小 . 分析:点 C 的变化是否影响∠ACB 的大小的变化呢?我们不妨将点 C 改变一下,如何变化呢?可 能在优弧 AB 上,也可能在劣弧 AB 上变化,显然这两者的结果不一样。那么,当点 C 在优弧 AB 上 变化时,∠ACB 所对的弧是劣弧 AB,它的大小为劣弧 AB 的一半,因此很自然地想到它的圆心角, 连结 AO、BO,则由于 AB=OA=OB,即三角形 ABC 为等边三角形,则∠AOB=600,则由同弧所对 的圆心角与圆周角的关系得出:∠ACB= 2 1 ∠AOB=300, 当点 C 在劣弧 AB 上变化时,∠ACB 所对的弧是优弧 AB,它的大小为优弧 AB 的一半,由∠ AOB=600 得,优弧 AB 的度数为 3600-600=3000,则由同弧所对的圆心角与 圆周角的关系得出:∠ACB=1500, 因此,本题的答案有两个,分别为 300 或 1500. 反思:本题通过点 C 在圆上运动的不确定性而引起结果的不唯一性。从 而需要分类讨论。这样由点 C 的运动变化性而引起的分类讨论在解题中经常 出现。 变式 1:已知△ABC 是半径为 2 的圆内接三角形,若 32AB ,求∠C 的 大小. A B F D E M N C O B A C O B A C 本题与例 1 的区别只是 AB 与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形 AOB 中, 2 32 1 2 1sin OB AB AOB ,则 0602 1 AOB ,即 0120AOB , 从而当点 C 在优弧 AB 上变化时,∠C 所对的弧是劣弧 AB,它的大小为劣弧 AB 的一半,即 060C , 当点 C 在劣弧 AB 上变化时,∠C 所对的弧是优弧 AB,它的大小为优 弧 AB 的一半,由∠AOB=1200 得,优弧 AB 的度数为 3600-1200=2400,则 由同弧所对的圆心角与圆周角的关系得出:∠C=1200, 因此 060C 或∠C=1200. 变式 2: 如图,半经为 1 的半圆 O 上有两个动点 A、B,若 AB=1, 判断∠AOB 的大小是否会随点 A、B 的变化而变化,若变化,求出变化范 围,若不变化,求出它的值。 四边形 ABCD 的面积的最大值。 解:(1)由于 AB=OA=OB,所以三角形 AOB 为等边三角形,则∠ AOB=600,即∠AOB 的大小不会随点 A、B 的变化而变化。 (2)四边形 ABCD 的面积由三个三角形组成,其中三角形 AOB 的面积为 4 3 ,而三角 形 AOD 与三角形 BOC 的面积之和为 )(2 1 2 1 2 1 BGAFBGOCAFOD ,又由梯形 的中位线定理得三角形 AOD 与三角形 BOC 的面积之和 EHBGAF )(2 1 ,要四边形 ABCD 的面积最大,只需 EH 最大,显然 EH≤OE= 2 3 ,当 AB∥CD 时,EH=OE,因此 四边形 ABCD 的面积最大值为 4 3 + 2 3 = 4 33 . 对于本题同学们还可以继续思考:四边形 ABCD 的周长的变化范围. 变式 3: 如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的 两个顶点分 别为 A、B,另一个顶点 C 在半圆上,问怎样截取才能使截出的三角形 的面积最大?要求说明理由(广州市 2000 年考题) 分析:要使三角形 ABC 的面积最大,而三角形 ABC 的底边 AB 为 圆的直径为常量,只需 AB 边上的高最大即可。过点 C 作 CD⊥AB 于点 D,连结 CO, 由于 CD≤CO,当 O 与 D 重合,CD=CO,因此,当 CO 与 AB 垂直时, H G F E O D C B A A B C D O O C B A D A B C O 即 C 为半圆弧 的中点时,其三角形 ABC 的面积最大。 本题也可以先猜想,点 C 为半圆弧的中点时,三角形 ABC 的面积最大,故只需另选一个位置 C1(不 与 C 重合),,证明三角形 ABC 的面积大于三角形 ABC1 的面积即可。如图 显然三角形 ABC1 的面积= 2 1 AB×C1D,而 C1D< C1O=CO,则三角形 ABC1 的面积= 2 1 AB× C1D< 2 1 AB×C1O=三角形 ABC 的面积,因此,对于除点 C 外的任意点 C1,都有三角形 ABC1 的面积小 于三角形三角形 ABC 的面积,故点 C 为半圆中点时,三角形 ABC 面积最大. 本题还可研究三角形 ABC 的周长何时最大的问题。 提示:利用周长与面积之间的关系。要三角形 ABC 的周长最大,AB 为常 数,只需 AC+BC 最大,而(AC+BC)2=AC2+CB2+2AC×BC=AB2+4× ΔABC 的面积,因此ΔABC 的面积最大时,AC+BC 最大,从而ΔABC 的周长最大。 从以上一道题及其三个变式的研究我们不难发现,解决动态几何问题的常 见方法有: 一、 特殊探路,一般推证 例 2:(2004 年广州市中考题第 11 题)如图,⊙O1 和⊙O2 内切于 A,⊙O1 的半径为 3,⊙O2 的半径为 2,点 P 为⊙O1 上的任一点(与点 A 不重合),直线 PA 交⊙O2 于点 C,PB 切⊙O2 于点 B,则 PC BP 的值为 (A) 2 (B) 3 (C) 2 3 (D) 2 6 分析:本题是一道选择题,给出四个答案有且只有一个是正确的,因此可以 取一个特殊位置进行研究,当点 P 满足 PB⊥AB 时,可以通过计算得出 PB= 2213 22 BC×AP=BP×AB,因此 BC= 6 24 62 28 816 28 22 BPAB BPAB , 在三角形 BPC 中,PC= 3 6222 BCBP , 所以, PC BP = 3 选(B) C D A B C 1 O C O 1 O 2 P B A C O 1 O 2 P B A 当然,本题还可以根据三角形相似得 BP AP PC BP ,即可计算出结论。 作为一道选择题,到此已经完成,但如果是一道解答题,我们得出的结论只是一个特殊情况,还要进 一步证明对一般情况也成立。 例 3:如图,在等腰直角三角形 ABC 中,斜边 BC=4,OA BC 于 O,点 E 和点 F 分别在边 AB、AC 上滑动并保持 AE=CF,但点 F 不与 A、C 重合,点 E 不与 B、A 重合。 判断 OEF 的形状,并加以证明。 判断四边形 AEOF 的面积是否随点 E、F 的变化而变化,若变化, 求其变化范围,若不变化,求它的值. AEF 的面积是否随着点 E、F 的变化而变化,若变化,求其变 化范围,若不变化,求它的值。 分析:本题结论很难发现,先从特殊情况入手。最特殊情况为 E、F 分别为 AB、AC 中点,显然有Δ EOF 为等腰直角三角形。还可发现当点 E 与 A 无限接近时,点 F 与点 C 无 限接近,此时ΔEOF 无限接近ΔAOC,而ΔAOC 为等腰直角三角形,几种 特殊情况都可以得出ΔEOF 为等腰直角三角形。一般情况下成立吗?OE 与 OF 相等吗?∠EOF 为直角吗?能否证明。如果它们成立,便可以推出三角 形 OFC 与三角形 OEA 全等,一般情况下这两个三角形全等吗? 不难从题目的条件可得:OA=OC,∠OCF=∠OAE,而 AE=CF,则ΔOEA ≌ΔOFC,则 OE=OF,且∠FOC=∠EOA,所以∠EOF=∠EOA+∠AOF=∠ FOC+∠FOA=900,则∠EOF 为直角,故ΔEOF 为等腰直角三角形。 二、 动手实践,操作确认 例 4(2003 年广州市中考试题)在⊙O 中,C 为弧 AB 的中点,D 为弧 AC 上任一点(与 A、C 不重合),则 (A)AC+CB=AD+DB (B) AC+CB