2019年辽宁省大连市中考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019年辽宁省大连市中考数学试卷

‎2019年辽宁省大连市中考数学试卷 一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)‎ ‎1.(3分)﹣2的绝对值是(  )‎ A.2 B. C.﹣ D.﹣2‎ ‎2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是(  )‎ A. B. ‎ C. D.‎ ‎3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为(  )‎ A.58×103 B.5.8×103 C.0.58×105 D.5.8x104‎ ‎4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(  )‎ A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)‎ ‎5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是(  )‎ A. B. ‎ C. D.‎ ‎6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是(  )‎ A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形 ‎7.(3分)计算(﹣2a)3的结果是(  )‎ A.﹣8a3 B.﹣6a3 C.6a3 D.8a3‎ 第28页(共28页)‎ ‎8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(  )‎ A. B. C. D.‎ ‎9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为(  )‎ A.2 B.4 C.3 D.2‎ ‎10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为   .‎ 二、填空题(本题共6小题,每小題分,共18分)‎ ‎11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=   °.‎ ‎12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是   .‎ 第28页(共28页)‎ ‎13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为   .‎ ‎14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为   .‎ ‎15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为   m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).‎ 第28页(共28页)‎ ‎16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b=   .‎ 三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)‎ ‎17.(9分)计算:(﹣2)2++6‎ ‎18.(9分)计算:÷+‎ ‎19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.‎ ‎20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.‎ 成绩等级 频数(人)‎ 频率 优秀 ‎15‎ ‎0.3‎ 良好 及格 不及格 ‎5‎ 根据以上信息,解答下列问题 第28页(共28页)‎ ‎(1)被测试男生中,成绩等级为“优秀”的男生人数为   人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为   %;‎ ‎(2)被测试男生的总人数为   人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为   %;‎ ‎(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.‎ 四、解答题(本共3小,其中21、22题各分,23题10分,共28分)‎ ‎21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 ‎(1)求2016年到2018年该村人均收入的年平均增长率;‎ ‎(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?‎ ‎22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.‎ ‎(1)求该反比例函数的解析式;‎ ‎(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.‎ 第28页(共28页)‎ ‎23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP ‎(1)求证:∠BAC=2∠ACD;‎ ‎(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.‎ 五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)‎ ‎24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:‎ ‎(1)线段AB的长;‎ ‎(2)S关于m的函数解析式,并直接写出自变量m的取值范围.‎ ‎25.(12分)阅读下面材料,完成(1)﹣(3)题 数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC 第28页(共28页)‎ 的数量关系,并证明.同学们经过思考后,交流了自已的想法:‎ 小明:“通过观察和度量,发现∠BAE与∠DAC相等.”‎ 小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”‎ ‎……‎ 老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”‎ ‎(1)求证:∠BAE=∠DAC;‎ ‎(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;‎ ‎(3)直接写出的值(用含k的代数式表示).‎ ‎26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).‎ ‎(1)填空:t的值为   (用含m的代数式表示)‎ ‎(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;‎ ‎(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.‎ 第28页(共28页)‎ ‎2019年辽宁省大连市中考数学试卷 参考答案与试题解析 一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)‎ ‎1.(3分)﹣2的绝对值是(  )‎ A.2 B. C.﹣ D.﹣2‎ ‎【解答】解:﹣2的绝对值是2.‎ 故选:A.‎ ‎2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是(  )‎ A. B. ‎ C. D.‎ ‎【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.‎ 故选:B.‎ ‎3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为(  )‎ A.58×103 B.5.8×103 C.0.58×105 D.5.8x104‎ ‎【解答】解:将数58000用科学记数法表示为5.8×104.‎ 故选:D.‎ ‎4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(  )‎ A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1)‎ ‎【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),‎ 第28页(共28页)‎ 故选:A.‎ ‎5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是(  )‎ A. B. ‎ C. D.‎ ‎【解答】解:5x+1≥3x﹣1,‎ 移项得5x﹣3x≥﹣1﹣1,‎ 合并同类项得2x≥﹣2,‎ 系数化为1得,x≥﹣1,‎ 在数轴上表示为:‎ 故选:B.‎ ‎6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是(  )‎ A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形 ‎【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;‎ B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;‎ C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;‎ D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.‎ 故选:C.‎ ‎7.(3分)计算(﹣2a)3的结果是(  )‎ A.﹣8a3 B.﹣6a3 C.6a3 D.8a3‎ ‎【解答】解:(﹣2a)3=﹣8a3;‎ 故选:A.‎ ‎8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(  )‎ A. B. C. D.‎ ‎【解答】解:两次摸球的所有的可能性树状图如下:‎ 第28页(共28页)‎ ‎∴P两次都是红球=.‎ 故选:D.‎ ‎9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为(  )‎ A.2 B.4 C.3 D.2‎ ‎【解答】解:连接AC交EF于点O,如图所示:‎ ‎∵四边形ABCD是矩形,‎ ‎∴AD=BC=8,∠B=∠D=90°,‎ AC===4,‎ ‎∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2,‎ ‎∴∠AOF=∠D=90°,∠OAF=∠DAC,‎ ‎∴则Rt△FOA∽Rt△ADC,‎ ‎∴=,即:=,‎ 解得:AF=5,‎ ‎∴D′F=DF=AD﹣AF=8﹣5=3,‎ 故选:C.‎ 第28页(共28页)‎ ‎10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为 2 .‎ ‎【解答】解:当y=0时,﹣x2+x+2=0,‎ 解得:x1=﹣2,x2=4,‎ ‎∴点A的坐标为(﹣2,0);‎ 当x=0时,y=﹣x2+x+2=2,‎ ‎∴点C的坐标为(0,2);‎ 当y=2时,﹣x2+x+2=2,‎ 解得:x1=0,x2=2,‎ ‎∴点D的坐标为(2,2).‎ 设直线AD的解析式为y=kx+b(k≠0),‎ 将A(﹣2,0),D(2,2)代入y=kx+b,得:‎ ‎,解得:,‎ ‎∴直线AD的解析式为y=x+1.‎ 第28页(共28页)‎ 当x=0时,y=x+1=1,‎ ‎∴点E的坐标为(0,1).‎ 当y=1时,﹣x2+x+2=1,‎ 解得:x1=1﹣,x2=1+,‎ ‎∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),‎ ‎∴PQ=1+﹣(1﹣)=2.‎ 故答案为:2.‎ 二、填空题(本题共6小题,每小題分,共18分)‎ ‎11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D= 130 °.‎ ‎【解答】解:∵AB∥CD,‎ ‎∴∠B=∠C=50°,‎ ‎∵BC∥DE,‎ ‎∴∠C+∠D=180°,‎ ‎∴∠D=180°﹣50°=130°,‎ 故答案为:130.‎ ‎12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是 25 .‎ 第28页(共28页)‎ ‎【解答】解:观察条形统计图知:为25岁的最多,有8人,‎ 故众数为25岁,‎ 故答案为:25.‎ ‎13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为 2 .‎ ‎【解答】解:∵△ABC是等边三角形,‎ ‎∴∠B=∠BAC=∠ACB=60°,‎ ‎∵CD=AC,‎ ‎∴∠CAD=∠D,‎ ‎∵∠ACB=∠CAD+∠D=60°,‎ ‎∴∠CAD=∠D=30°,‎ ‎∴∠BAD=90°,‎ ‎∴AD===2.‎ 故答案为2.‎ ‎14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu 第28页(共28页)‎ ‎,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为  .‎ ‎【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,‎ 根据题意得:,‎ 故答案为.‎ ‎15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为 3 m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).‎ ‎【解答】解:在Rt△BCD中,tan∠BDC=,‎ 则BC=CD•tan∠BDC=10,‎ 在Rt△ACD中,tan∠ADC=,‎ 则AC=CD•tan∠ADC≈10×1.33=13.3,‎ ‎∴AB=AC﹣BC=3.3≈3(m),‎ 故答案为:3.‎ ‎16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b=  .‎ 第28页(共28页)‎ ‎【解答】解:从图1,可见甲的速度为=60,‎ 从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,‎ ‎∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,‎ a﹣b==,‎ 故答案为.‎ 三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)‎ ‎17.(9分)计算:(﹣2)2++6‎ ‎【解答】解:原式=3+4﹣4+2+6×‎ ‎=3+4﹣4+2+2‎ ‎=7.‎ ‎18.(9分)计算:÷+‎ ‎【解答】解:原式=×﹣‎ ‎=﹣‎ ‎=.‎ ‎19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.‎ 第28页(共28页)‎ ‎【解答】证明:∵BE=CF,‎ ‎∴BE+EF=CF+EF,即BF=CE,‎ 在△ABF和△DCE中,‎ ‎,‎ ‎∴△ABF≌△DCE(SAS)‎ ‎∴AF=DE.‎ ‎20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.‎ 成绩等级 频数(人)‎ 频率 优秀 ‎15‎ ‎0.3‎ 良好 及格 不及格 ‎5‎ 根据以上信息,解答下列问题 ‎(1)被测试男生中,成绩等级为“优秀”的男生人数为 15 人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为 90 %;‎ ‎(2)被测试男生的总人数为 50 人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为 10 %;‎ ‎(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.‎ 第28页(共28页)‎ ‎【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,‎ 被测试男生总数15÷0.3=50(人),‎ 成绩等级为“及格”的男生人数占被测试男生总人数的百分比:,‎ 故答案为15,90;‎ ‎(2)被测试男生总数15÷0.3=50(人),‎ 成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:,‎ 故答案为50,10;‎ ‎(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,‎ 该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)‎ 答:该校八年级男生成绩等级为“良好”的学生人数72人.‎ 四、解答题(本共3小,其中21、22题各分,23题10分,共28分)‎ ‎21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 ‎(1)求2016年到2018年该村人均收入的年平均增长率;‎ ‎(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?‎ ‎【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,‎ 根据题意得:20000(1+x)2=24200,‎ 解得:x1=0.1=10%,x2=1.1(不合题意,舍去).‎ 答:2016年到2018年该村人均收入的年平均增长率为10%.‎ ‎(2)24200×(1+10%)=26620(元).‎ 答:预测2019年村该村的人均收入是26620元.‎ 第28页(共28页)‎ ‎22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.‎ ‎(1)求该反比例函数的解析式;‎ ‎(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.‎ ‎【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,‎ ‎∴k=3×2=6,‎ ‎∴反比例函数y=;‎ 答:反比例函数的关系式为:y=;‎ ‎(2)过点A作AE⊥OC,垂足为E,连接AC,‎ 设直线OA的关系式为y=kx,将A(3,2)代入得,k=,‎ ‎∴直线OA的关系式为y=x,‎ ‎∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,‎ ‎∴B(a,),即BC═a,‎ D(a,),即CD=‎ ‎∵S△ACD=,‎ ‎∴CD•EC=,即,解得:a=6,‎ 第28页(共28页)‎ ‎∴BD=BC﹣CD==3;‎ 答:线段BD的长为3.‎ ‎23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP ‎(1)求证:∠BAC=2∠ACD;‎ ‎(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.‎ ‎【解答】(1)证明:作DF⊥BC于F,连接DB,‎ ‎∵AP是⊙O的切线,‎ ‎∴∠PAC=90°,即∠P+∠ACP=90°,‎ ‎∵AC是⊙O的直径,‎ ‎∴∠ADC=90°,即∠PCA+∠DAC=90°,‎ ‎∴∠P=∠DAC=∠DBC,‎ ‎∵∠APC=∠BCP,‎ ‎∴∠DBC=∠DCB,‎ ‎∴DB=DC,‎ 第28页(共28页)‎ ‎∵DF⊥BC,‎ ‎∴DF是BC的垂直平分线,‎ ‎∴DF经过点O,‎ ‎∵OD=OC,‎ ‎∴∠ODC=∠OCD,‎ ‎∵∠BDC=2∠ODC,‎ ‎∴∠BAC=∠BDC=2∠ODC=2∠OCD;‎ ‎(2)解:∵DF经过点O,DF⊥BC,‎ ‎∴FC=BC=3,‎ 在△DEC和△CFD中,‎ ‎,‎ ‎∴△DEC≌△CFD(AAS)‎ ‎∴DE=FC=3,‎ ‎∵∠ADC=90°,DE⊥AC,‎ ‎∴DE2=AE•EC,‎ 则EC==,‎ ‎∴AC=2+=,‎ ‎∴⊙O的半径为.‎ 第28页(共28页)‎ 五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)‎ ‎24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:‎ ‎(1)线段AB的长;‎ ‎(2)S关于m的函数解析式,并直接写出自变量m的取值范围.‎ ‎【解答】解:(1)当x=0时,y=3,‎ 当y=0时,x=4,‎ ‎∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)‎ ‎∴OA=4,OB=3,‎ ‎∴AB=,‎ 因此:线段AB的长为5.‎ ‎(2)当CD∥OA时,如图,‎ ‎∵BD=OC,OC=m,‎ 第28页(共28页)‎ ‎∴BD=m,‎ 由△BCD∽△BOA得:‎ ‎,即:,解得:m=;‎ ‎①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部,‎ S=0 (0<m≤);‎ ‎②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F,‎ 此时在x轴下方的三角形与△CDF全等,‎ ‎∵△BDF∽△BAO,‎ ‎∴,‎ ‎∴DF=,同理:BF=m,‎ ‎∴CF=2m﹣3,‎ ‎∴S△CDF==(2m﹣3)×=m2﹣4m,‎ 即:S=m2﹣4m,(<m≤3)‎ ‎③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG,‎ 同理得:DF=,BF=m,‎ ‎∴OF=DG=m﹣3,AG=m﹣4,‎ ‎∴S=S△OGE﹣S△ADG==‎ ‎∴S=,(m>3)‎ 答:S=‎ 第28页(共28页)‎ 第28页(共28页)‎ ‎25.(12分)阅读下面材料,完成(1)﹣(3)题 数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:‎ 小明:“通过观察和度量,发现∠BAE与∠DAC相等.”‎ 小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”‎ ‎……‎ 老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”‎ ‎(1)求证:∠BAE=∠DAC;‎ ‎(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;‎ ‎(3)直接写出的值(用含k的代数式表示).‎ ‎【解答】证明:(1)∵AB=AD ‎∴∠ABD=∠ADB 第28页(共28页)‎ ‎∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE ‎∴∠BAE=∠DAC ‎(2)设∠DAC=α=∠BAE,∠C=β ‎∴∠ABC=∠ADB=α+β ‎∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ‎∴∠EAC=2β ‎∵AF平分∠EAC ‎∴∠FAC=∠EAF=β ‎∴∠FAC=∠C,∠ABE=∠BAF=α+β ‎∴AF=FC,AF=BF ‎∴AF=BC=BF ‎∵∠ABE=∠BAF,∠BGA=∠BAC=90°‎ ‎∴△ABG∽△BCA ‎∴‎ ‎∵∠ABE=∠BAF,∠ABE=∠AFB ‎∴△ABF∽△BAD ‎∴,且AB=kBD,AF=BC=BF ‎∴k=,即 ‎∴‎ ‎(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°‎ ‎∴∠ABH=∠C,且∠BAC=∠BAC ‎∴△ABH∽△ACB ‎∴‎ ‎∴AB2=AC×AH 设BD=m,AB=km,‎ ‎∵‎ ‎∴BC=2k2m 第28页(共28页)‎ ‎∴AC==km ‎∴AB2=AC×AH ‎(km)2=km×AH ‎∴AH=‎ ‎∴HC=AC﹣AH=km﹣=‎ ‎∴‎ ‎26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).‎ ‎(1)填空:t的值为 2m﹣1 (用含m的代数式表示)‎ ‎(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;‎ ‎(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.‎ ‎【解答】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,‎ 顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),‎ C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,‎ t=2m﹣1,‎ 故答案为:2m﹣1;‎ ‎(2)a=﹣1时,‎ C1:y=(x﹣1)2﹣4,‎ ‎①当t<1时,‎ x=时,有最小值y2=,‎ x=t时,有最大值y1=﹣(t﹣1)2+4,‎ 第28页(共28页)‎ 则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;‎ ‎②1≤t时,‎ x=1时,有最大值y1=4,‎ x=时,有最小值y2=﹣(t﹣1)2+4,‎ y1﹣y2=≠1(舍去);‎ ‎③当t时,‎ x=1时,有最大值y1=4,‎ x=t时,有最小值y2=﹣(t﹣1)2+4,‎ y1﹣y2=(t﹣1)2=1,‎ 解得:t=0或2(舍去0),‎ 故C2:y=(x﹣2)2﹣4=x2﹣4x;‎ ‎(3)m=0,‎ C2:y=﹣a(x+1)2+4a,‎ 点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),‎ 当a>0时,a越大,则OD越大,则点D′越靠左,‎ 当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,‎ 当C2过点D′时,同理可得:a=1,‎ 故:0<a或a≥1;‎ 当a<0时,‎ 当C2过点D′时,﹣3a=1,解得:a=﹣,‎ 故:a≤﹣;‎ 第28页(共28页)‎ 综上,故:0<a或a≥1或a≤﹣.‎ 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/7/13 8:54:46;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557‎ 第28页(共28页)‎
查看更多

相关文章

您可能关注的文档