- 2021-05-10 发布 |
- 37.5 KB |
- 28页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年辽宁省大连市中考数学试卷
2019年辽宁省大连市中考数学试卷 一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确) 1.(3分)﹣2的绝对值是( ) A.2 B. C.﹣ D.﹣2 2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( ) A. B. C. D. 3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为( ) A.58×103 B.5.8×103 C.0.58×105 D.5.8x104 4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为( ) A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1) 5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是( ) A. B. C. D. 6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形 7.(3分)计算(﹣2a)3的结果是( ) A.﹣8a3 B.﹣6a3 C.6a3 D.8a3 第28页(共28页) 8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A. B. C. D. 9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为( ) A.2 B.4 C.3 D.2 10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为 . 二、填空题(本题共6小题,每小題分,共18分) 11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D= °. 12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是 . 第28页(共28页) 13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为 . 14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为 . 15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为 m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33). 第28页(共28页) 16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b= . 三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分) 17.(9分)计算:(﹣2)2++6 18.(9分)计算:÷+ 19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE. 20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分. 成绩等级 频数(人) 频率 优秀 15 0.3 良好 及格 不及格 5 根据以上信息,解答下列问题 第28页(共28页) (1)被测试男生中,成绩等级为“优秀”的男生人数为 人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为 %; (2)被测试男生的总人数为 人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为 %; (3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数. 四、解答题(本共3小,其中21、22题各分,23题10分,共28分) 21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 (1)求2016年到2018年该村人均收入的年平均增长率; (2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元? 22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD. (1)求该反比例函数的解析式; (2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长. 第28页(共28页) 23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP (1)求证:∠BAC=2∠ACD; (2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径. 五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分) 24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求: (1)线段AB的长; (2)S关于m的函数解析式,并直接写出自变量m的取值范围. 25.(12分)阅读下面材料,完成(1)﹣(3)题 数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC 第28页(共28页) 的数量关系,并证明.同学们经过思考后,交流了自已的想法: 小明:“通过观察和度量,发现∠BAE与∠DAC相等.” 小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.” …… 老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.” (1)求证:∠BAE=∠DAC; (2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明; (3)直接写出的值(用含k的代数式表示). 26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0). (1)填空:t的值为 (用含m的代数式表示) (2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式; (3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围. 第28页(共28页) 2019年辽宁省大连市中考数学试卷 参考答案与试题解析 一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确) 1.(3分)﹣2的绝对值是( ) A.2 B. C.﹣ D.﹣2 【解答】解:﹣2的绝对值是2. 故选:A. 2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( ) A. B. C. D. 【解答】解:左视图有3列,每列小正方形数目分别为2,1,1. 故选:B. 3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为( ) A.58×103 B.5.8×103 C.0.58×105 D.5.8x104 【解答】解:将数58000用科学记数法表示为5.8×104. 故选:D. 4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为( ) A.(3,﹣1) B.(3,3) C.(1,1) D.(5,1) 【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1), 第28页(共28页) 故选:A. 5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是( ) A. B. C. D. 【解答】解:5x+1≥3x﹣1, 移项得5x﹣3x≥﹣1﹣1, 合并同类项得2x≥﹣2, 系数化为1得,x≥﹣1, 在数轴上表示为: 故选:B. 6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A.等腰三角形 B.等边三角形 C.菱形 D.平行四边形 【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误; B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误; C、菱形既是轴对称图形,又是中心对称图形,故本选项正确; D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误. 故选:C. 7.(3分)计算(﹣2a)3的结果是( ) A.﹣8a3 B.﹣6a3 C.6a3 D.8a3 【解答】解:(﹣2a)3=﹣8a3; 故选:A. 8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A. B. C. D. 【解答】解:两次摸球的所有的可能性树状图如下: 第28页(共28页) ∴P两次都是红球=. 故选:D. 9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为( ) A.2 B.4 C.3 D.2 【解答】解:连接AC交EF于点O,如图所示: ∵四边形ABCD是矩形, ∴AD=BC=8,∠B=∠D=90°, AC===4, ∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2, ∴∠AOF=∠D=90°,∠OAF=∠DAC, ∴则Rt△FOA∽Rt△ADC, ∴=,即:=, 解得:AF=5, ∴D′F=DF=AD﹣AF=8﹣5=3, 故选:C. 第28页(共28页) 10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为 2 . 【解答】解:当y=0时,﹣x2+x+2=0, 解得:x1=﹣2,x2=4, ∴点A的坐标为(﹣2,0); 当x=0时,y=﹣x2+x+2=2, ∴点C的坐标为(0,2); 当y=2时,﹣x2+x+2=2, 解得:x1=0,x2=2, ∴点D的坐标为(2,2). 设直线AD的解析式为y=kx+b(k≠0), 将A(﹣2,0),D(2,2)代入y=kx+b,得: ,解得:, ∴直线AD的解析式为y=x+1. 第28页(共28页) 当x=0时,y=x+1=1, ∴点E的坐标为(0,1). 当y=1时,﹣x2+x+2=1, 解得:x1=1﹣,x2=1+, ∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1), ∴PQ=1+﹣(1﹣)=2. 故答案为:2. 二、填空题(本题共6小题,每小題分,共18分) 11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D= 130 °. 【解答】解:∵AB∥CD, ∴∠B=∠C=50°, ∵BC∥DE, ∴∠C+∠D=180°, ∴∠D=180°﹣50°=130°, 故答案为:130. 12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是 25 . 第28页(共28页) 【解答】解:观察条形统计图知:为25岁的最多,有8人, 故众数为25岁, 故答案为:25. 13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为 2 . 【解答】解:∵△ABC是等边三角形, ∴∠B=∠BAC=∠ACB=60°, ∵CD=AC, ∴∠CAD=∠D, ∵∠ACB=∠CAD+∠D=60°, ∴∠CAD=∠D=30°, ∴∠BAD=90°, ∴AD===2. 故答案为2. 14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu 第28页(共28页) ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为 . 【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛, 根据题意得:, 故答案为. 15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为 3 m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33). 【解答】解:在Rt△BCD中,tan∠BDC=, 则BC=CD•tan∠BDC=10, 在Rt△ACD中,tan∠ADC=, 则AC=CD•tan∠ADC≈10×1.33=13.3, ∴AB=AC﹣BC=3.3≈3(m), 故答案为:3. 16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b= . 第28页(共28页) 【解答】解:从图1,可见甲的速度为=60, 从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80, ∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程, a﹣b==, 故答案为. 三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分) 17.(9分)计算:(﹣2)2++6 【解答】解:原式=3+4﹣4+2+6× =3+4﹣4+2+2 =7. 18.(9分)计算:÷+ 【解答】解:原式=×﹣ =﹣ =. 19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE. 第28页(共28页) 【解答】证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE, 在△ABF和△DCE中, , ∴△ABF≌△DCE(SAS) ∴AF=DE. 20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分. 成绩等级 频数(人) 频率 优秀 15 0.3 良好 及格 不及格 5 根据以上信息,解答下列问题 (1)被测试男生中,成绩等级为“优秀”的男生人数为 15 人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为 90 %; (2)被测试男生的总人数为 50 人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为 10 %; (3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数. 第28页(共28页) 【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人, 被测试男生总数15÷0.3=50(人), 成绩等级为“及格”的男生人数占被测试男生总人数的百分比:, 故答案为15,90; (2)被测试男生总数15÷0.3=50(人), 成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:, 故答案为50,10; (3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%, 该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人) 答:该校八年级男生成绩等级为“良好”的学生人数72人. 四、解答题(本共3小,其中21、22题各分,23题10分,共28分) 21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 (1)求2016年到2018年该村人均收入的年平均增长率; (2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元? 【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x, 根据题意得:20000(1+x)2=24200, 解得:x1=0.1=10%,x2=1.1(不合题意,舍去). 答:2016年到2018年该村人均收入的年平均增长率为10%. (2)24200×(1+10%)=26620(元). 答:预测2019年村该村的人均收入是26620元. 第28页(共28页) 22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD. (1)求该反比例函数的解析式; (2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长. 【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上, ∴k=3×2=6, ∴反比例函数y=; 答:反比例函数的关系式为:y=; (2)过点A作AE⊥OC,垂足为E,连接AC, 设直线OA的关系式为y=kx,将A(3,2)代入得,k=, ∴直线OA的关系式为y=x, ∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=, ∴B(a,),即BC═a, D(a,),即CD= ∵S△ACD=, ∴CD•EC=,即,解得:a=6, 第28页(共28页) ∴BD=BC﹣CD==3; 答:线段BD的长为3. 23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP (1)求证:∠BAC=2∠ACD; (2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径. 【解答】(1)证明:作DF⊥BC于F,连接DB, ∵AP是⊙O的切线, ∴∠PAC=90°,即∠P+∠ACP=90°, ∵AC是⊙O的直径, ∴∠ADC=90°,即∠PCA+∠DAC=90°, ∴∠P=∠DAC=∠DBC, ∵∠APC=∠BCP, ∴∠DBC=∠DCB, ∴DB=DC, 第28页(共28页) ∵DF⊥BC, ∴DF是BC的垂直平分线, ∴DF经过点O, ∵OD=OC, ∴∠ODC=∠OCD, ∵∠BDC=2∠ODC, ∴∠BAC=∠BDC=2∠ODC=2∠OCD; (2)解:∵DF经过点O,DF⊥BC, ∴FC=BC=3, 在△DEC和△CFD中, , ∴△DEC≌△CFD(AAS) ∴DE=FC=3, ∵∠ADC=90°,DE⊥AC, ∴DE2=AE•EC, 则EC==, ∴AC=2+=, ∴⊙O的半径为. 第28页(共28页) 五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分) 24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求: (1)线段AB的长; (2)S关于m的函数解析式,并直接写出自变量m的取值范围. 【解答】解:(1)当x=0时,y=3, 当y=0时,x=4, ∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3) ∴OA=4,OB=3, ∴AB=, 因此:线段AB的长为5. (2)当CD∥OA时,如图, ∵BD=OC,OC=m, 第28页(共28页) ∴BD=m, 由△BCD∽△BOA得: ,即:,解得:m=; ①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部, S=0 (0<m≤); ②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F, 此时在x轴下方的三角形与△CDF全等, ∵△BDF∽△BAO, ∴, ∴DF=,同理:BF=m, ∴CF=2m﹣3, ∴S△CDF==(2m﹣3)×=m2﹣4m, 即:S=m2﹣4m,(<m≤3) ③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG, 同理得:DF=,BF=m, ∴OF=DG=m﹣3,AG=m﹣4, ∴S=S△OGE﹣S△ADG== ∴S=,(m>3) 答:S= 第28页(共28页) 第28页(共28页) 25.(12分)阅读下面材料,完成(1)﹣(3)题 数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法: 小明:“通过观察和度量,发现∠BAE与∠DAC相等.” 小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.” …… 老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.” (1)求证:∠BAE=∠DAC; (2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明; (3)直接写出的值(用含k的代数式表示). 【解答】证明:(1)∵AB=AD ∴∠ABD=∠ADB 第28页(共28页) ∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE ∴∠BAE=∠DAC (2)设∠DAC=α=∠BAE,∠C=β ∴∠ABC=∠ADB=α+β ∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β ∵AF平分∠EAC ∴∠FAC=∠EAF=β ∴∠FAC=∠C,∠ABE=∠BAF=α+β ∴AF=FC,AF=BF ∴AF=BC=BF ∵∠ABE=∠BAF,∠BGA=∠BAC=90° ∴△ABG∽△BCA ∴ ∵∠ABE=∠BAF,∠ABE=∠AFB ∴△ABF∽△BAD ∴,且AB=kBD,AF=BC=BF ∴k=,即 ∴ (3)∵∠ABE=∠BAF,∠BAC=∠AGB=90° ∴∠ABH=∠C,且∠BAC=∠BAC ∴△ABH∽△ACB ∴ ∴AB2=AC×AH 设BD=m,AB=km, ∵ ∴BC=2k2m 第28页(共28页) ∴AC==km ∴AB2=AC×AH (km)2=km×AH ∴AH= ∴HC=AC﹣AH=km﹣= ∴ 26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0). (1)填空:t的值为 2m﹣1 (用含m的代数式表示) (2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式; (3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围. 【解答】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a, 顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a), C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1, t=2m﹣1, 故答案为:2m﹣1; (2)a=﹣1时, C1:y=(x﹣1)2﹣4, ①当t<1时, x=时,有最小值y2=, x=t时,有最大值y1=﹣(t﹣1)2+4, 第28页(共28页) 则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解; ②1≤t时, x=1时,有最大值y1=4, x=时,有最小值y2=﹣(t﹣1)2+4, y1﹣y2=≠1(舍去); ③当t时, x=1时,有最大值y1=4, x=t时,有最小值y2=﹣(t﹣1)2+4, y1﹣y2=(t﹣1)2=1, 解得:t=0或2(舍去0), 故C2:y=(x﹣2)2﹣4=x2﹣4x; (3)m=0, C2:y=﹣a(x+1)2+4a, 点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0), 当a>0时,a越大,则OD越大,则点D′越靠左, 当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=, 当C2过点D′时,同理可得:a=1, 故:0<a或a≥1; 当a<0时, 当C2过点D′时,﹣3a=1,解得:a=﹣, 故:a≤﹣; 第28页(共28页) 综上,故:0<a或a≥1或a≤﹣. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/7/13 8:54:46;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557 第28页(共28页)查看更多