小学数学精讲教案3_1_2 相遇与追及问题 学生版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

小学数学精讲教案3_1_2 相遇与追及问题 学生版

相遇与追及问题 教学目标 1、 根据学习的“路程和=速度和× 时间”继续学习简单的直线上的相遇与追及问题 2、 研究行程中复杂的相遇与追及问题 3、 通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的 4、 培养学生的解决问题的能力 ‎ ‎ 知识精讲 一、相遇 甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么 相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 ‎=(甲的速度+乙的速度)×相遇时间 ‎=速度和×相遇时间.‎ 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即 二、追及 有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:‎ 追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 ‎=(甲的速度-乙的速度)×追及时间 ‎=速度差×追及时间. ‎ 一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即 例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为和,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间t追了乙5米 三、在研究追及和相遇问题时,一般都隐含以下两种条件:‎ ‎(1)在整个被研究的运动过程中,2个物体所运行的时间相同 ‎(2)在整个运行过程中,2个物体所走的是同一路径。‎ 例题精讲 模块一、直线上的相遇问题 【例 1】 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。3.5小时两车相遇。甲、乙两个城市的路程是多少千米?‎ 【巩固】 两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。甲、乙两车相遇时,各行了多少千米?‎ 【巩固】 聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?‎ 【例 2】 大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?‎ 【例 3】 ‎、两地相距米,包子从地到地需要秒,菠萝从地到地需要秒,现在包子和菠萝从、两地同时相对而行,相遇时包子与地的距离是多少米?‎ 【巩固】 甲、乙两车分别从相距千米的、两城同时出发,相对而行,已知甲车到达城需小时,乙车到达城需小时,问:两车出发后多长时间相遇? ‎ 【例 4】 甲、乙两辆汽车分别从、两地出发相对而行,甲车先行小时,甲车每小时行千米,乙车每小时行 千米,小时相遇,求、两地间的距离.‎ 【巩固】 甲、乙两列火车从相距千米的两地相向而行,甲车每小时行千米,乙车每小时行千米,乙车先出发小时后,甲车才出发.甲车行几小时后与乙车相遇?‎ 【巩固】 甲、乙两列火车从相距千米的两地相向而行,甲车每小时行千米,乙车每小时行千米,乙车先出发小时后,甲车才出发.甲车行几小时后与乙车相遇?‎ 【巩固】 妈妈从家出发到学校去接小红,妈妈每分钟走米.妈妈走了分钟后,小红从学校出发,小红每分钟走米.再经过分钟妈妈和小红相遇.从小红家到学校有多少米?‎ 【巩固】 甲乙两座城市相距千米,货车和客车从两城同时出发,相向而行.货车每小时行千米,客车每小时行千米.客车在行驶中因故耽误小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?‎ 【巩固】 甲、乙两列火车从相距千米的两个城市对面开来,甲列火车每小时行千米,乙列火车每小时行千米,甲列火车先开出小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?‎ 【例 1】 甲、乙两辆汽车分别从、两地出发相向而行,甲车先行3小时后乙车从地出发,乙车出发小时后两车还相距千米.甲车每小时行千米,乙车每小时行千米.求、两地间相距多少千米?‎ 【巩固】 甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141公里;出发后5小时,两车相遇。A、B两地相距______ 公里。 ‎ 【例 1】 甲、乙二人分别从东、西两镇同时出发相向而行.出发小时后,两人相距千米;出发小时后,两人还相距千米.问出发多少小时后两人相遇?‎ 【例 2】 两列城铁从两城同时相对开出,一列城铁每小时走千米,另一列城铁每小时走千米,在途中每列车先后各停车次,每次停车分钟,经过小时两车相遇,求两城的距离?‎ 【例 3】 南辕与北辙两位先生对于自己的目的地s城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?.‎ 【巩固】 南辕与北辙两位先生对于自己的目的地城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为千米/时,千米/时,那么北辙先生出发小时他们相距多少千米?‎ 【巩固】 两列火车从相距千米的两城背向而行,甲列车每小时行千米,乙列车每小时行千米,小时后,甲、乙两车相距多少千米?‎ 【巩固】 两列火车从相距千米的两城背向而行,甲列车每小时行千米,乙列车每小时行千米,小时后,甲、乙两车相距多少千米?‎ 【例 4】 两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?‎ 【巩固】 两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?为什么?‎ 【巩固】 孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?‎ 【巩固】 两列货车从相距450千米的两个城市相向开出,甲货车每小时行38千米,乙货车每小时行40千米,同时行驶4小时后,还相差多少千米没有相遇?‎ 【巩固】 甲乙两人分别以每小时6千米,每小时4千米的速度从相距30千米的两地向对方的出发地前进.当两人之间的距离是10千米时,他们走了___________小时.‎ 【巩固】 一辆公共汽车和一辆小轿车同时从相距千米的两地相向而行,公共汽车每小时行千米,小轿车每小时行千米,问几小时后两车相距千米?‎ 【巩固】 两列火车从相距千米的两城相向而行,甲列车每小时行千米,乙列车每小时行千米,小时后,甲、乙两车还相距多少千米?‎ 【例 1】 甲、乙两地相距 240 千米,一列慢车从甲地出发,每小时行 60千米.同时一列快车从乙地出发,每小时行 90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)‎ 【例 2】 小强每分钟走米,小季每分钟走米,两人同时从同一地点背向走了分钟,小强掉头去追小季,追上小季时小强共走了多少米?‎ 【例 1】 甲、乙两辆汽车同时从地出发去地,甲车每小时行千米,乙车每小时行千米.途中甲车出故障停车修理了小时,结果甲车比乙车迟到小时到达地.、两地间的路程是多少?‎ 【例 2】 小张和小王早晨8时整从甲地出发去乙地,小张开车,速度是每小时60千米。小王步行,速度为每小时4千米。如果小张到达乙地后停留1小时立即沿原路返回,恰好在10时整遇到正在前往乙地的小王。那么甲、乙两地之间的距离是_______千米。‎ 【例 3】 小明的家住学校的南边,小芳的家在学校的北边,两家之间的路程是1410米,每天上学时,如果小明比小芳提前3分钟出发,两人可以同时到校.已知小明的速度是70米/分钟,小芳的速度是80米/分钟,求小明家距离学校有多远?‎ 【巩固】 学校和部队驻地相距千米,小宇和小宙由学校骑车去部队驻地,小宇每小时行千米,小宙每小时行千米.当小宇走了千米后,小宙才出发.当小宙追上小宇时,距部队驻地还有多少千米?‎ 【例 4】 甲、乙两列火车同时从地开往地,甲车小时可以到达,乙车每小时比甲车多行千米,比甲车提前小时到达.求、两地间的距离.‎ 【例 5】 军事演习中,“我”海军英雄舰追及“敌”军舰,追到A岛时,“敌”舰已在10分钟前逃离,“敌”舰每分钟行驶1000米,“我”海军英雄舰每分钟行驶1470米,在距离“敌”舰600米处可开炮射击,问“我”海军英雄舰从A岛出发经过多少分钟可射击敌舰?‎ 【巩固】 在一条笔直的高速公路上,前面一辆汽车以千米/小时的速度行驶,后面一辆汽车以千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?‎ 【例 1】 甲车每小时行40千米,乙车每小时行60千米。两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。求A,B两地的距离。‎ 【巩固】 甲、乙二人同时从地去地,甲每分钟行米,乙每分钟行米,乙到达地后立即返回,并与甲相遇,相遇时,甲还需行分钟才能到达地,、两地相距多少米?‎ 【例 2】 甲乙两车分别从A、B两地同时相向开出,4小时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A地80千米.问:甲车到达B地时,乙车还要经过多少时间才能到达A地?‎ 【例 3】 小红和小强同时从家里出发相向而行。小红每分钟走52米,小强每分钟走70米,二人在途中的A处相遇。若小红提前4分钟出发,但速度不变,小强每分钟走90米,则两人仍在A处相遇。小红和小强的家相距多远? ‎ 【巩固】 小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行米,李大爷每分钟行米,他们每天都在同一时刻相遇.有一天小明提前出门,因此比平时早分钟与李大爷相遇,这天小明比平时提前多少分钟出门?‎ 【例 4】 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?‎ 【巩固】 甲、乙两车从A,B两地同时出发,相向而行。如果甲车提前一段时间出发,那么两车将提前30分相遇。已知甲车速度是60千米/时,乙车速度是40千米/时。问:甲车提前了多少分出发?‎ 【例 1】 甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。甲每小时行32千米,乙每小时行48千米。甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。问:‎ ‎ (1)两人出发后多久可以开始用对讲机联络?‎ ‎ (2)他们用对讲机联络后,经过多长时间相遇?‎ ‎(3)他们可用对讲机联络多长时间?‎ 模块二、直线上的追及问题 【例 2】 小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?‎ 【巩固】 哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?‎ 【巩固】 小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.‎ 【巩固】 小聪和小明从学校到相距米的电影院去看电影.小聪每分钟行米,他出发后分钟小明才出发,结果俩人同时到达影院,小明每分钟行多少米?‎ 【巩固】 一辆慢车从甲地开往乙地,每小时行千米,开出小时后,一辆快车以每小时千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?‎ 【巩固】 六年级同学从学校出发到公园春游,每分钟走米,分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?‎ 【例 1】 下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).‎ 【巩固】 甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?‎ 【巩固】 解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?‎ 【巩固】 甲地和乙地相距千米,平平和兵兵由甲地骑车去乙地,平平每小时行千米,兵兵每小时行千米,当平平走了千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?‎ 【例 2】 甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行千米,乙机每小时行千米,飞行小时后它们相隔多少千米?这时候甲机提高速度用小时追上乙机,甲机每小时要飞行多少千米?‎ 【例 3】 王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走米,李华每分钟走米,出发分钟后,王芳返回学校取运动服,在学校又耽误了分钟,然后追赶李华.求多少分钟后追上李华?‎ 【巩固】 小王、小李共同整理报纸,小王每分钟整理份,小李每分钟整理份,小王迟到了 分钟,当小王、小李整理同样多份的报纸时,正好完成了这批任务.一共有多少份报纸?‎ 【巩固】 甲、乙两车同时从地向地开出,甲每小时行千米,乙每小时行千米,开出小时后,甲车因有紧急任务返回地;到达地后又立即向地开出追乙车,当甲车追上乙车时,两车正好都到达地,求、两地的路程.‎ 【巩固】 小李骑自行车每小时行千米,小王骑自行车每小时行千米.小李出发后小时,小王在小李的出发地点前面千米处出发,小李几小时可以追上小王?‎ 【例 1】 甲、乙两车同时从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B城市.那么,甲车在距离B城市________千米处追上乙车.‎ 【例 1】 两地相距米,甲、乙二人同时、同地向同一方向行走,甲每分钟走米,乙每分钟走米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?‎ 【巩固】 八戒和悟空两家相距千米,两人同时骑车,从家出发相对而行,悟空每小时行千米,八戒每小时行千米.两人相遇时,悟空和八戒各行了多少千米?‎ 【例 2】 龟、兔进行1000米的赛跑.小兔斜眼瞅瞅乌龟,心想:“我小兔每分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.”比赛开始后,当小兔跑到全程的一半时,发现把乌龟甩得老远,便毫不介意地躺在旁边睡着了.当乌龟跑到距终点还有40米时,小兔醒了,拔腿就跑.请同学们解答两个问题: 它们谁胜利了?为什么?‎ 【巩固】 上一次龟兔赛跑兔子输得很不服气,于是向乌龟再次下战书,比赛之前,为了表示它的大度,它让乌龟先跑10分钟,但是兔子不知道乌龟经过锻炼,速度已经提高到5倍,那么这一次谁将获得胜利呢?‎ 【例 1】 甲、乙两车分别从、两地出发,同向而行,乙车在前,甲车在后.已知甲车比乙车提前出发小时,甲车的速度是千米/小时,乙车每小时行千米.甲车出发小时后追上乙车,求、两地间的距离.‎ 【巩固】 一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行千米,汽车在后,每小时行千米,经过小时汽车追上摩托车,甲乙两地相距多少千米?‎ 【例 2】 小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝.小红、小蓝二人的速度各是多少?‎ 【巩固】 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?‎ 【巩固】 甲、乙二人沿着同一条米的跑道赛跑,甲由起跑线上起跑,乙在甲后米处起跑,当甲离终点还有米时,乙追上甲,那么当乙跑到终点时,甲离终点还有多少米?‎ 【例 1】 甲、乙两车同时从A、B两地沿相同的方向行驶。甲车如果每小时行驶60千米,则5小时可追上前方的乙车;如果每小时行驶70千米,则3小时可追上前方的乙车。由上可知,乙车每小时行驶_____千米(假设乙车的行驶速度保持不变)。‎ 【例 2】 刘老师骑电动车从学校到韩丁家家访,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进?‎ 【巩固】 王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?‎ 【例 3】 甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。两人的上山速度都是米/分,下山的速度都是米/分。甲到达山脚立即返回,乙到达山顶休息分钟后返回,两人在距山顶米处再次相遇。山道长 米。‎ 【巩固】 小张和小王早晨点整同时从甲地出发去乙地,小张开车,速度是每小时千米.小王步行,速度为每小时千米.如果小张到达乙地后停留小时立即沿原路返回,恰好在点整遇到正在前往乙地的小王.那么甲、乙两地之间的距离是 千米.‎ 【例 4】 如下图,某城市东西路与南北路交会于路口.甲在路口南边560米的点,乙在路口.甲向北,乙向东同时匀速行走.4分钟后二人距的距离相等.再继续行走24分钟后,二人距的距离恰又相等.问:甲、乙二人的速度各是多少?‎ 1. 【例 1】 早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午2点时两人之间的距离是15千米.下午3点时,两人之间的距离还是15千米.下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨_________出发.‎ 【例 2】 甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离.‎ 【巩固】 小叶子上学时骑车,回家时步行,路上共用分钟,如果往返都步行,则全程需要分钟,求往返都骑车所需的时间是多少?‎ 【例 3】 从甲城到乙城的铁路线上每隔10千米有一个小车站。一列慢车上午9点以45千米/时的速度由甲城开往乙城,另一列快车上午9点30分以60千米/时的速度也由甲城开往乙城。铁路部门规定,同方向前进的两列火车之间相距不能少于8千米。问:这列慢车最迟应该在距甲城多远的小车站停车让快车超过?‎ 模块三、终(中)点问题 【例 4】 夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?‎ 【巩固】 甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。‎ 【巩固】 甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.‎ 【巩固】 王老师从甲地到乙地,每小时步行5千米,张老师从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.‎ 【巩固】 蜡笔小新从家出发去超市找妈妈,小新妈妈从超市回家,他们同时出发,小新每分钟走米,小新妈妈每分钟走米,他们在离中点米的地方相遇了,求小新家到超市的距离是多少米?‎ 【巩固】 李明和王亮同时分别从两地骑车相向而行,李明每小时行千米,王亮每小时行千米,两人相遇时距全程中点千米.问全程长多少千米?‎ 【巩固】 树叶和月亮同时分别从两地骑车相向而行,树叶每小时行千米,月亮每小时行千米,两人相遇时距全程中点千米.问全程长多少千米?‎ 【巩固】 夏夏和冬冬同时从两地相向而行,两地相距1100米,夏夏每分钟行50米,冬冬每分钟行60米,问两人在距两地中点多远处相遇?‎ 【例 1】 甲、乙两人同时从两地相向而行.甲每小时行千米,乙每小时行千米.两人相遇时乙比甲少行千米.两地相距多少千米?‎ 【例 1】 小新和正南二人同时从学校和家出发,相向而行,小新骑车他的三轮车每分钟行100米,5分钟后小新已超过中点50米,这时二人还相距30米,正南每分钟行多少米?‎ 【例 2】 甲、乙两列火车同时从东西两镇之间的地出发向东西两镇反向而行,它们分别到达东西两镇后,再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?‎ 【例 3】 甲、乙二人从,两地同时出发相向而行,甲每分钟行80米,乙每分钟行70米,出发一段时间后,二人在距中点60米处相遇.如果甲晚出发一会儿,那么二人在距中点220米处相遇.甲晚出发了多少分钟?‎ 【例 4】 甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米.甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已经30分钟.问:甲、乙每分钟各走多少米?‎ 【例 5】 一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行千米.汽车每小时行千米.两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回.汽车到甲地立即返回.两车在距离中点千米的地方再次相遇,那么甲乙两地的路程是多少千米? ‎ 模块四、行程间的倍比关系 【例 6】 甲、乙两车分别同时从、两地相对开出,第一次在离地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地25千米处相遇.求、两地间的距离.‎ 【巩固】 甲、乙两车分别同时从、两地相对开出,第一次在离地90千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地30千米处相遇.求、两地间的距离?‎ 【巩固】 如图, 、是一条道路的两端点,亮亮在点,明明在点,两人同时出发,相向而行.他们在离点米的点第一次相遇.亮亮到达点后返回点,明明到达点后返回点,两人在离点米的点第二次相遇.整个过程中,两人各自的速度都保持不变.求 、间的距离.要求写出关键的推理过程. ‎ 【巩固】 甲、乙两车分别同时从、两地相对开出,第一次在离地千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地千米处相遇.求、两地间的距离?‎ 【巩固】 甲、乙二人同时分别从、两地出发,相向匀速而行.甲到达地后立即往回走,乙到达地后也立即往回走.已知他们第一次相遇在离,中点2千米处靠一侧,第二次相遇在离地4千米处.、两地相距多少千米?‎ 【例 1】 甲、乙两辆汽车同时分别从、两地相对开出,甲车每小时行千米,乙车每小时行千米.甲、乙两车第一次相遇后继续前进,甲、乙两车各自到达、两地后, 立即按原路原速返回.两车从开始到第二次相遇共用小时.求、两地的距离?‎ 【例 1】 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?‎ 【巩固】 自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队,然后通信员立即返回出发点;随后又返回去追自行车队,再追上时恰好离出发点18千米,求自行车队和摩托车的速度.‎ 【例 2】 甲、乙两车同时从两地相向而行,2.5时后相遇。已知甲车速度是乙车速度的,相遇时乙车比甲车多走千米,求两车的速度。‎ 【例 3】 杨平每天早晨按时从家出发步行上学,李大爷每天早晨也定时出门散步,两人相向而行,杨平步行每分行60米,李大爷步行每分行40米,他们每天都准时在途中相遇。有一天杨平提前出门,因此比平时早9分与李大爷相遇,杨平比平时早出门多少分?‎ 【例 4】 甲、乙两地之间有一条公路.李明从甲地出发步行去乙地,同时张平从乙地出发骑摩托车去甲地,80分钟后两人在途中相遇.张平到达甲地后马上折回往乙地,在第一次相遇后又经过20分钟在途中追上李明.张平到达乙地后又马上折回往甲地,这样一直下去.问:当李明到达乙地时,张平共追上李明多少次?‎ 【例 5】 ‎(这道题就是之前介绍过的苏步青教授利用巧妙方法解决过的一个问题,当时苏步青教授在德国访问,一位有名的德国数学家在电车上给他出了这道题)甲和乙分别从东西两地同时出发,相对而行,两地相距里,甲每小时走里,乙每小时走里.如果甲带一只狗,和甲同时出发,狗以每小时里的速度向乙奔去,遇到乙后即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲乙两人相遇时狗才停住.这只狗共跑了多少里路?‎ 【巩固】 某边防站甲、乙两哨所相距 15千米。一天,两个哨所的巡逻队同时从各自的哨所出发相向而行,他们的速度分别为4.5千米/时和5.5千米/时。乙队出发时,他们带的一只军犬同时向甲哨所方向跑去,遇到甲队时立即转身往回跑,遇到乙队又立即转身向甲哨所方向跑去……这只军犬就这样不停地以20千米/时的速度在甲、乙两队之间奔跑,直到两队会合为止。问:这只军犬来回共跑了多少路?‎ 【巩固】 A、B两地相距480千米,甲、乙两车同时从两站相对出发,甲车每小时行35千米,乙车每小时行45千米,一只燕子以每小时行50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车返飞去,遇到甲车又返飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?‎ 【巩固】 小新和阿呆各骑一辆自行车从相距32千米的两个地方沿直线相向而行,在他们同时出发的那一瞬间,一辆自行车把上的一只小鸟开始向另一辆自行车径直飞去,它一到达另一辆自行车的车把,就立即转向往回飞行,这只小鸟如此在两辆自行车的车把之间来回飞行,直到小新和阿呆相遇为止.如果小新每小时行驶17千米,阿呆每小时行驶15千米,小鸟每小时飞行24千米,那么小鸟总共飞行了多少千米?‎ 【巩固】 在一次宴会上,一位客人给著名的数学大师、“计算机之父”冯·诺伊曼先生出了一个蜜蜂问题:两列火车相距英里,在同一轨道上相向行驶,速度都是每小时英里.火车的前端有一只蜜蜂以每小时英里的速度飞向火车,遇到火车以后.立即回头以同样的速度飞向火车,遇到火车后,又回头飞向火车,速度始终保持不变,如此下去,直到两列火车相遇时才停止.假设蜜蜂回头转身的时间忽略不计,那么,这只蜜蜂一共飞了多少英里的路?‎ 【巩固】 阿呆和阿瓜同时从距离千米的两地相向而行,阿呆每小时走千米,阿瓜每小时走千米. 阿瓜带着一只小狗,狗每小时走千米.这只狗同阿瓜一道出发碰到阿呆的时候,它就掉头朝阿瓜这边走,碰到阿瓜时又朝阿呆那边走,直到两人相遇,问这只小狗一共走了多少千米?‎ 【例 1】 甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5‎ ‎ 分钟;乙每小时行 12 千米,则经过________小时________分的时候两人相遇.‎ 【例 1】 一个圆的圆周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒钟分别爬行厘米和厘米,在运动过程中它们不断地调头.如果把出发算作第零次调头,那么相邻两次调头的时间间隔顺次是1秒、3秒、5秒、……,即是一个由连续奇数组成的数列.问它们相遇时,已爬行的时间是多少秒?‎ 【巩固】 老师教同学们做游戏:在一个周长为114米的圆形跑道上,两个同学从一条直径的两端同时出发沿圆周开始跑,1秒钟后他们都调头跑,再过3秒他们又调头跑,依次照1、3、5……分别都调头而跑,每秒两人分别跑米和米,那么经过几秒,他们初次相遇?‎ 【例 2】 某条道路上,每隔900米有一个红绿灯.所有的红绿灯都按绿灯30秒、黄灯5秒、红灯25秒的时间周期同时重复变换.一辆汽车通过第一个红绿灯后,以每小时多少千米的速度行驶,可以在所有的红绿灯路口都遇到绿灯?‎ 【例 3】 甲、乙二人从相距36千米的两地相向而行。若甲先出发2时,则在乙动身2.5时后两人相遇;若乙先出发2时,则甲动身3时后两人相遇。求甲、乙二人的速度。‎ 【例 4】 一条单线铁路上有A,B,C,D,E五个车站,它们之间的路程如下图所示(单位:千米)。甲、乙两列火车分别从A,E两站相对开出,甲车先开4分,每时行60千米,乙车每时行50千米,两车只能在车站停车,互相让道错车。两车应在哪一个车站会车(相遇),才能使停车等候的时间最短?先到的火车至少要停车多少时间?‎ 【例 1】 张涛坐在行驶的公共汽车上,忽然发现李梅正在向相反的方向步行,2分后汽车到站,张涛下车去追李梅。如果张涛的速度是李梅的2倍,是汽车速度的。那么张涛追上李梅要多少分? ‎ 【例 2】 甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:‎ ‎  (1) A, B相距多少米?‎ ‎  (2)如果丙从A跑到B用24秒,那么甲的速度是多少?‎ 【例 3】 快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分、10分、12分追上骑车人。已知快、慢车的速度分别为24千米/时和19千米/时,求中速车的速度。‎
查看更多

相关文章

您可能关注的文档