2012-2013学年山东省济南市芙蓉小学五年级(下)期中数学试卷(6)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2012-2013学年山东省济南市芙蓉小学五年级(下)期中数学试卷(6)

‎2012-2013学年山东省济南市芙蓉小学五年级(下)期中数学试卷(6)‎ 一、直接写出得数.‎ ‎ ‎ ‎1. 直接写出得数。 ‎ ‎1.53−0.5‎‎=‎ ‎7.8+0.9‎‎=‎ ‎7.5−2.5‎‎=‎ ‎12÷0.4‎‎=‎ ‎0.56+4.44‎‎=‎ ‎2.9+3.7+2.1‎‎=‎ ‎4×0.25‎‎=‎ ‎1.25×5×8‎‎=‎ ‎7.6×8+2.4×8‎‎=‎ 二、填空.‎ ‎ ‎ ‎ 如图 ‎ ‎(1)指针从“‎1‎”绕点O顺时针旋转‎60‎‎∘‎后指向________‎ ‎ ‎ ‎(2)指针从“‎1‎”绕点O逆时针旋转‎90‎‎∘‎后指向________‎ ‎ ‎ ‎(3)指针从“‎7‎”绕点O逆时针旋转‎90‎‎∘‎后指向________‎ ‎ ‎ ‎(4)指针从‎5‎绕点O旋转到‎12‎点,顺时针要旋转________度,逆时针要旋转________度。‎ ‎ ‎ ‎ ‎3.05m= ‎305‎ cm ‎10.8‎m‎2‎= ‎1080‎ dm‎2‎ ‎6050cm‎3‎= ‎6.05‎ dm‎3‎ ‎2800mL= ‎2.8‎ L= ‎2.8‎ dm‎3‎. ‎ ‎ ‎ ‎ 在括号里填上适当的体积单位或容积单位。 ‎ ‎ ‎ ‎ 长方体和正方体都有________个面,________条棱,________个顶点。 ‎ ‎ ‎ ‎ ‎36‎和‎9‎,________是________的倍数,________是________的因数。 ‎ ‎ ‎ ‎ 按要求写出:‎12‎的所有因数:________,‎50‎以内‎12‎的倍数:________. ‎ ‎ ‎ ‎ 从‎0‎、‎5‎、‎6‎、‎7‎四个数中任意抽出‎3‎个,按要求组成‎4‎个不同的三位数:奇数________;‎3‎的倍数________; 偶数________;既是‎3‎的倍数又是‎5‎的倍数________. ‎ ‎ ‎ ‎ 最小的自然数与最小的质数和最小的合数的和是________. ‎ ‎ ‎ ‎ 两个质数的和是‎10‎,积是‎21‎,它们分别是________和________. ‎ ‎ ‎ ‎ 同时是‎2‎、‎3‎、‎5‎的倍数的最小两位数是________,最大两位数是________,最小三位数是________. ‎ ‎ ‎ ‎ 一个正方体的棱长扩大‎2‎倍,表面积就扩大________倍。 ‎ ‎ ‎ ‎ 一个长方体和一个正方体的棱长总和相等,已知长方体的长是‎6cm,宽是‎5cm,高是‎4cm,那么正方体的棱长是________的体积比较大。 ‎ 二、判断题 ‎ ‎ ‎ 平行四边形是轴对称图形。________.(判断对错) ‎ ‎ ‎ ‎ 一个自然数不是奇数就是偶数。________(判断对错) ‎ ‎ ‎ 第13页 共14页 ◎ 第14页 共14页 ‎ 有两个相对面是正方形的长方体,它的其余四个面完全相同。________.(判断对错) ‎ ‎ ‎ ‎ 至少要用‎4‎个体积是‎1‎立方厘米的正方体,才能拼成一个大正方体。________.(判断对错) ‎ ‎ ‎ ‎ 一瓶白酒有‎500‎升。…________. ‎ 三、选择.(请选择正确答案的序号填在括号里)‎ ‎ ‎ ‎ 相邻的两个体积单位之间的进率是( ) ‎ A.‎10‎ B.‎100‎ C.‎‎1000‎ ‎ ‎ ‎ 一个正方体的棱长扩大‎3‎倍,体积扩大( )倍。 ‎ A.‎3‎ B.‎9‎ C.‎‎27‎ ‎ ‎ ‎ 一个合数至少有( )个因数。 ‎ A.‎2‎ B.‎3‎ C.‎‎4‎ ‎ ‎ ‎ 要使三位数“‎56‎□”能被‎3‎整除,“□”里最大能填( ) ‎ A.‎7‎ B.‎8‎ C.‎‎9‎ ‎ ‎ ‎ 一根长方体木料,它的横截面积是‎9cm‎2‎,把它截成‎2‎段,表面积增加‎(‎ ‎)cm‎2‎. ‎ A.‎9‎ B.‎18‎ C.‎‎27‎ ‎ ‎ ‎ 有一个数,它既是‎30‎的倍数又是‎30‎的因数,这个数是( ) ‎ A.‎15‎ B.‎30‎ C.‎‎60‎ 四、计算.845‎ ‎ ‎ ‎ 计算下面立体图形的表面积和体积。(单位:cm) ‎ 五、操作.‎ ‎ ‎ ‎ 画出下面各轴对称图形的对称轴,能画几条就画几条。 ‎ ‎ ‎ ‎ 画出下面图形的轴对称图形。 ‎ ‎ ‎ ‎ 画出绕点O顺时针旋转‎90‎‎∘‎的图形。 ‎ 六、解决问题.1、小卖部要做一个长220厘米,宽40厘米,高80厘米的玻璃柜台各边都安上角铁,这个柜台需要多少米角铁?‎ ‎ ‎ ‎ 学校要粉刷一间教室的四壁和天花板。已知教室的长是‎9‎米,宽‎7‎米,高是‎3‎米,扣除门窗的面积‎12.5‎平方米,要粉刷的面积是多少平方米? ‎ ‎ ‎ ‎ 一个棱长是‎5‎分米的正方体鱼缸,里面装满水,把水倒入一个底面积‎50‎平方分米的长方体鱼缸里,长方体鱼缸里的水有多深? ‎ 第13页 共14页 ◎ 第14页 共14页 参考答案与试题解析 ‎2012-2013学年山东省济南市芙蓉小学五年级(下)期中数学试卷(6)‎ 一、直接写出得数.‎ ‎1.‎ ‎【答案】‎ ‎1.03‎‎,‎8.7‎,‎5‎,‎30‎,‎5‎,‎8.7‎,‎1‎,‎50‎,‎‎80‎ ‎【考点】‎ 小数除法 小数四则混合运算 运算定律与简便运算 小数的加法和减法 小数乘法 ‎【解析】‎ ‎2.9+3.7+2.1‎运用加法交换律简算;‎1.25×5×8‎运用乘法交换律简算;‎7.6×8+2.4×8‎运用乘法分配律简算;其它题目按照运算法则直接求解。‎ ‎【解答】‎ ‎1.53−0.5‎‎=‎1.03‎,‎7.8+0.9‎=‎8.7‎,‎7.5−2.5‎=‎5‎,‎12÷0.4‎=‎30‎,‎0.56+4.44‎=‎5‎, ‎2.9+3.7+2.1‎=‎8.7‎,‎4×0.25‎=‎1‎,‎1.25×5×8‎=‎50‎,‎7.6×8+2.4×8‎=‎80‎.‎ 二、填空.‎ ‎【答案】‎ ‎3‎ ‎10‎ ‎4‎ ‎210‎‎,‎‎150‎ ‎【考点】‎ 将简单图形平移或旋转一定的度数 ‎【解析】‎ 首根据题意,把李时间看单位“”,则陈红所用的时间是‎11‎‎9‎‎(1+‎2‎‎9‎=‎11‎‎9‎)‎,据此求出陈红李东的工作时间之比是少然根据工作量一定时,工作率作时成反比,求出陈红和的工作效率之是少可。‎ ‎【解答】‎ 解:因为陈红和李的工作时间是: 答:陈红和的工效率之比是‎9:1‎. ‎(1+‎2‎‎9‎)‎:‎1‎ 陈和李东的工作效率之比是‎9:1‎. ‎=119‎ 故答为:‎9:1‎.‎ ‎【答案】‎ ‎305‎‎、‎1080‎、‎6.05‎、‎2.8‎,‎‎2.8‎ ‎【考点】‎ 体积、容积进率及单位换算 面积单位间的进率及单位换算 ‎【解析】‎ ‎1‎米=‎100‎厘米;‎1‎平方米=‎100‎平方分米;‎1‎立方分米=‎1000‎立方厘米,‎1‎立方厘米‎=‎‎1‎‎1000‎立方分米;‎1‎升=‎1‎立方分米=‎1000‎毫升,‎1‎毫升‎=‎‎1‎‎1000‎升;据此即可求解。‎ ‎【解答】‎ ‎3.05m‎=‎305cm; ‎10.8‎m‎2‎=‎1080dm‎2‎; ‎6050cm‎3‎=‎6050×‎1‎‎1000‎dm‎3‎=‎6.05dm‎3‎; ‎2800mL=‎2.8L=‎2.8dm‎3‎;‎ ‎【答案】‎ 解 ‎【考点】‎ 体积、容积及其单位 ‎【解析】‎ 根据容积单位、体积单位的意义,常用的容积单位有:升和毫升;常用的体积单位有:立方米、立方分米、立方厘米;然后根据实际生活情况进行解答即可。‎ ‎【解答】‎ 解 ‎【答案】‎ ‎6‎‎,‎12‎,‎‎8‎ ‎【考点】‎ 正方体的特征 ‎【解析】‎ 根据长方体和正方体的特征即可解决。‎ ‎【解答】‎ 根据长方体和正方体的特征可得;长方体和正方体都有‎6‎个面,‎12‎条棱,‎8‎个顶点,‎ ‎【答案】‎ ‎36‎‎,‎9‎,‎9‎,‎‎36‎ ‎【考点】‎ 因数和倍数的意义 ‎【解析】‎ 第13页 共14页 ◎ 第14页 共14页 根据因数和倍数的意义进行解答即可。‎ ‎【解答】‎ ‎36‎和‎9‎,‎36‎是‎9‎的倍数,‎9‎是‎36‎的因数;‎ ‎【答案】‎ ‎1‎‎、‎2‎、‎3‎、‎4‎、‎6‎、‎12‎,‎12‎、‎24‎、‎36‎、‎‎48‎ ‎【考点】‎ 找一个数的因数的方法 找一个数的倍数的方法 ‎【解析】‎ 根据找一个数因数的方法,列举出‎18‎的因数; 根据找一个数倍数的方法,列举出‎50‎以内的‎18‎的所有倍数;据此解答。‎ ‎【解答】‎ 解:‎12‎的因数有:‎1‎、‎2‎、‎3‎、‎4‎、‎6‎、‎12‎; ‎50‎以内的‎12‎的所有倍数:‎12‎、‎24‎、‎36‎、‎48‎. 故答案为:‎1‎、‎2‎、‎3‎、‎4‎、‎6‎、‎12‎;‎12‎、‎24‎、‎36‎、‎48‎.‎ ‎【答案】‎ ‎507‎‎、‎705‎、‎305‎、‎503‎;,‎507‎、‎705‎、‎750‎、‎570‎;,‎570‎、‎750‎、‎350‎、‎370‎;,‎570‎、‎750‎、‎705‎.‎ ‎【考点】‎ 奇数与偶数的初步认识 ‎2、3、5的倍数特征 ‎【解析】‎ 根据奇数、偶数的意义,‎3‎、‎5‎的倍数特征,在自然数中,是‎2‎的倍数的数叫做偶数,不是‎2‎的倍数的‎2‎数叫做奇数。‎3‎的倍数特征是:各位上的数的和是‎3‎的倍数,这个数一定是‎3‎的倍数,个位上是‎0‎或‎5‎的数是‎5‎的倍数。据此解答。‎ ‎【解答】‎ 从‎0‎、‎5‎、‎3‎、‎7‎四个数中任意抽出‎3‎个组成的三位数, 奇数有:‎507‎、‎705‎、‎305‎、‎503‎; ‎3‎的倍数有:‎507‎、‎705‎、‎750‎、‎570‎; 偶数有:‎570‎、‎750‎、‎350‎、‎370‎; 既是‎3‎的倍数又是‎5‎的倍数:‎570‎、‎750‎、‎705‎.‎ ‎【答案】‎ ‎6‎ ‎【考点】‎ 质数与合数问题 自然数的认识 ‎【解析】‎ 表示物体个数的数叫自然数,最小的自然数为‎0‎;自然数中,除了‎1‎和它本身之外没有别的因数的数为质数,除了‎1‎和它本身外还有别的因数的数为合数。由此可知,最小质数为‎2‎,最小的合数为‎4‎,据此即能求出它们的和是多少。‎ ‎【解答】‎ 最小的自然数是‎0‎,最小的质数是‎2‎,最小的合数的和是‎4‎,它们的和为: ‎0+2+4‎=‎6‎.‎ ‎【答案】‎ ‎3‎‎,‎‎7‎ ‎【考点】‎ 质数与合数问题 ‎【解析】‎ 将‎21‎分解质因数为‎21‎=‎3×7‎,又‎3+7‎=‎10‎,所以这两个质数分别是‎3‎和(7)‎ ‎【解答】‎ ‎21‎‎=‎3×7‎, ‎3+7‎=(10) 即这两个质数分别是‎3‎和(7)‎ ‎【答案】‎ ‎30‎‎,‎90‎,‎‎120‎ ‎【考点】‎ 数的整除特征 ‎2、3、5的倍数特征 ‎【解析】‎ ‎(1)(2)根据‎2‎、‎3‎、‎5‎的倍数的倍数特征可知;同时是‎2‎、‎3‎、‎5‎的倍数的倍数,只要是个位是‎0‎,十位满足是‎3‎的倍数即可,十位满足是‎3‎的倍数的有;‎3‎、‎6‎、‎9‎,其中‎3‎是最小的,‎9‎是最大的,据此求出最大与最小; (3)同时是‎2‎、‎3‎、‎5‎的倍数的倍数的最小的三位数,只要个位是‎0‎,百位是最小的自然数‎1‎,十位满足和百位、个位上的数加起来是‎3‎的倍数即可,这样的数有:‎2‎、‎5‎、‎8‎,其中‎2‎是最小的,据此求出。‎ ‎【解答】‎ 同时是‎2‎、‎3‎、‎5‎的倍数的最小两位数是‎30‎,最大两位数是‎90‎,最小三位数是‎120‎;‎ ‎【答案】‎ ‎4‎ ‎【考点】‎ 长方体和正方体的表面积 积的变化规律 ‎【解析】‎ 根据正方体的表面积公式和积的变化规律,正方体的表面积公式:s=‎6‎a‎2‎,积扩大的倍数等于因数扩大倍数的乘积,正方体的棱长扩大‎2‎倍,表面积就扩大‎4‎倍。‎ ‎【解答】‎ 答:一个正方体的棱长扩大‎2‎倍,表面积就扩大‎4‎倍。 故答案为:‎4‎.‎ ‎【答案】‎ ‎5cm‎,表面积是‎150cm‎2‎,与长方体比较,正方体 ‎【考点】‎ 长方体和正方体的体积 长方体和正方体的表面积 ‎【解析】‎ 由“一个长方体和一个正方体的棱长总和相等,已知长方体的长是‎6cm,宽是‎5cm,高是‎4cm”可知,正方体的棱长和=长方体的棱长和=‎[(6+5+4)×4]‎厘米,进而可以求出正方体的棱长;从而可以分别求出其表面积和体积;再与长方体的体积相比,即可知道谁大谁小。‎ ‎【解答】‎ 正方体的棱长=‎(6+5+4)×4÷12‎, =‎15×4÷12‎, =‎60÷12‎, =‎5‎(厘米); 正方体的表面积=‎5×5×6‎=‎150‎(平方厘米); 正方体的体积=‎5×5×5‎=‎125‎(立方厘米); ‎ 第13页 共14页 ◎ 第14页 共14页 长方体的体积=‎6×5×4‎=‎120‎(立方厘米); 所以正方体的体积大于长方体的体积。‎ 二、判断题 ‎【答案】‎ 错误 ‎【考点】‎ 轴对称图形的辨识 ‎【解析】‎ 依据轴对称图形的定义即可作答。‎ ‎【解答】‎ 因为平行四边形无论沿哪一条直线对折,对折后的两部分都不能完全重合,所以平行四边形不是轴对称图形。 答:平行四边形是轴对称图形,这种说法是错误的。 故答案为:错误。‎ ‎【答案】‎ ‎√‎ ‎【考点】‎ 奇数与偶数的初步认识 ‎【解析】‎ 奇数与偶数是按能否被‎2‎整除划分的,两部分合在一起,构成了自然数,由此判定即可。‎ ‎【解答】‎ 自然数按能否被‎2‎整除分为奇数和偶数,所以所有的自然数不是偶数就是奇数是正确的。‎ ‎【答案】‎ 正确 ‎【考点】‎ 长方体的特征 ‎【解析】‎ 假设是上、下两个面都是正方形的长方体,即长方体的长和宽相等,其它四个面的面积都等于正方形的边长‎×‎高,因为正方形的边长都相等,长方体的高不变,所以它的其余四个面完全相同,面积相等。‎ ‎【解答】‎ 解:由分析知:有两个相对面是正方形的长方体,它的其余四个面完全相同,面积相等; 故答案为:正确。‎ ‎【答案】‎ 错误 ‎【考点】‎ 长方体和正方体的体积 ‎【解析】‎ 体积是‎1‎立方厘米的正方体的棱长是‎1‎厘米,用它拼成一个大正方体,这个大正方体的棱长至少是‎2‎厘米,它的体积就是‎2‎‎3‎‎=8‎立方厘米,再看‎8‎立方厘米里面有几个‎1‎立方厘米,就是至少用的‎1‎立方厘米的正方体个数。‎ ‎【解答】‎ 解:根据题意这个大正方体的棱长至少是‎2‎厘米, 体积是:‎2‎‎3‎‎=8‎立方厘米, ‎1‎立方厘米的正方体个数:‎8÷1=8‎(个); 答:至少要用‎8‎个体积是‎1‎立方厘米的正方体,才能拼成一个大正方体。 故判断为:错误。‎ ‎【答案】‎ 错误 ‎【考点】‎ 根据情景选择合适的计量单位 ‎【解析】‎ 根据题意知,酒的多少要用容积单位,数量为‎500‎毫升,由此可以进行判断。‎ ‎【解答】‎ 由题意知,酒的多少要用容积单位, 根据生活实际知,数量应为‎500‎毫升,“升”这个单位太大了, 所以上面的说法是错误的,‎ 三、选择.(请选择正确答案的序号填在括号里)‎ ‎【答案】‎ C ‎【考点】‎ 体积、容积及其单位 ‎【解析】‎ 根据常用的体积单位,立方米、立方分米、立方厘米;以及相邻单位之间的进率解答即可。‎ ‎【解答】‎ ‎1‎立方米=‎1000‎立方分米; ‎1‎立方分米=‎1000‎立方厘米;‎ ‎【答案】‎ C ‎【考点】‎ 长方体和正方体的体积 ‎【解析】‎ 正方体的体积等于棱长的立方,它的棱长扩大几倍,则它的体积扩大棱长扩大倍数的立方倍,据此规律可得。‎ ‎【解答】‎ 正方体的棱长扩大‎3‎倍,它的体积则扩大‎3‎‎3‎=‎27‎倍。‎ ‎【答案】‎ B ‎【考点】‎ 质数与合数问题 ‎【解析】‎ 自然数中,除了‎1‎和它本身外还有别的因数的数为合数。由此可知,一个合数除了‎1‎和它本身外,至少还要有一个因数即至少有‎3‎个因数,如‎4‎,共有‎1‎,‎2‎,‎4‎三个因数。‎ ‎【解答】‎ 根据合数的意义可知, 一个合数除了‎1‎和它本身外,至少还要有一个因数,即至少有‎3‎个因数。‎ ‎【答案】‎ A ‎【考点】‎ 找一个数的倍数的方法 ‎【解析】‎ 根据能被‎3‎整除的数的特征:即该数各个数位上数的和能被‎3‎整除;进行解答即可。‎ ‎【解答】‎ 要使三位数“‎56‎□”能被‎3‎整除,因为‎5+6‎=‎11‎,‎11+1‎=‎12‎,‎11+4‎=‎15‎,‎11+7‎=‎18‎; ‎12‎、‎15‎和‎18‎都能被‎3‎整除,所以“□”里可以填‎1‎,‎4‎,‎7‎;最大为‎7‎;‎ 第13页 共14页 ◎ 第14页 共14页 ‎【答案】‎ B ‎【考点】‎ 长方体和正方体的体积 ‎【解析】‎ 根据题意,把它截成‎2‎段就会露出两个横截面,表面积也就是增加了‎2‎个横截面的面积,列式解答即可得到答案。‎ ‎【解答】‎ ‎9×2‎‎=‎18‎(平方厘米),‎ ‎【答案】‎ B ‎【考点】‎ 找一个数的因数的方法 ‎【解析】‎ 由题意知:‎30‎的最小倍数是‎30×1‎=‎30‎,最大约数是‎30‎,因为最大约数和最小倍数相等,故这个数为‎30‎.‎ ‎【解答】‎ 有一个数,它既是‎30‎的倍数又是‎30‎的因数,这个数就是‎30‎本身;‎ 四、计算.845‎ ‎【答案】‎ 长方体的表面积是‎184‎平方厘米,体积是‎160‎立方厘米。 (2)‎7×7×6‎=‎294‎(平方厘米)(2)‎7×7×7‎=‎343‎(立方厘米)(3)答:正方体的表面积是‎294‎平方厘米,体积是‎343‎立方厘米 ‎【考点】‎ 长方体和正方体的体积 长方体和正方体的表面积 ‎【解析】‎ ‎(1)由图可知,长方体的长是‎8‎厘米,宽是‎4‎厘米,高是‎5‎厘米,根据长方体的表面积公式:s=‎(ab+ah+bh)×2‎,体积公式:v=abh, (2)已知正方体的棱长是‎7‎厘米,根据正方体的表面积公式:s=‎6‎a‎2‎,体积公式:v=a‎3‎,由此列式解答;‎ ‎【解答】‎ ‎8×4×5‎‎=‎160‎(立方厘米)(1)答:长方体的表面积是‎184‎平方厘米,体积是‎160‎立方厘米。 (2)‎7×7×6‎=‎294‎(平方厘米)(2)‎7×7×7‎=‎343‎(立方厘米)(3)答:正方体的表面积是‎294‎平方厘米,体积是‎343‎立方厘米。‎ 五、操作.‎ ‎【答案】‎ 解:如图所示,即为所要画的图形的对称轴; .‎ ‎【考点】‎ 确定轴对称图形的对称轴条数及位置 ‎【解析】‎ 依据轴对称图形的概念及对称轴的条数即可作答。‎ ‎【解答】‎ 解:如图所示,即为所要画的图形的对称轴; .‎ ‎【答案】‎ 画出下面图形的轴对称图形: ‎ ‎【考点】‎ 作轴对称图形 ‎【解析】‎ 根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,连结即可。‎ ‎【解答】‎ 画出下面图形的轴对称图形: ‎ ‎【答案】‎ 解:画出绕点O顺时针旋转‎90‎‎∘‎的图形: ‎ 第13页 共14页 ◎ 第14页 共14页 ‎【考点】‎ 作旋转一定角度后的图形 ‎【解析】‎ 根据旋转的特征,三角形绕点O顺时旋转‎90‎‎∘‎后,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可画出旋转后的图形。‎ ‎【解答】‎ 解:画出绕点O顺时针旋转‎90‎‎∘‎的图形: ‎ 六、解决问题.1、小卖部要做一个长220厘米,宽40厘米,高80厘米的玻璃柜台各边都安上角铁,这个柜台需要多少米角铁?‎ ‎【答案】‎ 解:‎9×7+9×3×2+7×3×2−12.5‎ ‎=63+54+42−12.5‎, ‎=159−12.5‎, ‎=146.5‎(平方米); 答:要粉刷的面积是‎146.5‎平方米。‎ ‎【考点】‎ 长方体、正方体表面积与体积计算的应用 ‎【解析】‎ 首先搞清这道题是求长方体的表面积,其次这个长方体的表面由五个长方形组成,缺少下面,最后计算这五个面的面积减去门窗的面积,由此解决问题。‎ ‎【解答】‎ 解:‎9×7+9×3×2+7×3×2−12.5‎ ‎=63+54+42−12.5‎, ‎=159−12.5‎, ‎=146.5‎(平方米); 答:要粉刷的面积是‎146.5‎平方米。‎ ‎【答案】‎ ‎5×5×5÷50‎‎ =‎125÷50‎, =‎2.5‎(分米); 答:长方体鱼缸里的水有‎2.5‎分米深 ‎【考点】‎ 长方体和正方体的体积 ‎【解析】‎ 根据题意可知,把正方体鱼缸里面装满水,倒入长方体鱼缸里,水的体积不变,根据正方体的体积公式v=a‎3‎,求出水的体积,再除以长方体的底面积就求出长方体鱼缸里的水有多深;由此列式解答。‎ ‎【解答】‎ ‎5×5×5÷50‎‎ =‎125÷50‎, =‎2.5‎(分米); 答:长方体鱼缸里的水有‎2.5‎分米深 第13页 共14页 ◎ 第14页 共14页
查看更多

相关文章

您可能关注的文档