- 2021-11-12 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
相似三角形的周长与面积3
27.2.3相似三角形的周长与面积 教学目标: (一)知识与技能 1、理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方,并能用来解决简单的问题。 2、探索相似多边形周长的比等于相似比、面积比等于相似比的平方,体验化归思想。 (二)过程与方法 经历探索相似三角形性质“相似三角形周长的比等于相似比” 、“面积比等于相似比的平方”的过程。 (三)情感态度与价值观 在探究过程中发展学生积极的情感、态度、价值观,体验解决实际问题策略的多样性。 教学重点: 理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。 教学难点: 探索相似多边形周长的比等于相似比、面积比等于相似比的平方。 教学过程: 新课引入: 1.回顾相似三角形的概念及判定方法。 2.复习相似多边形的定义及相似多边形对应边、对应角的性质。 提出问题: 如果两个三角形相似,它们的周长之间什么关系?两个相似多边形呢?(学生小组讨论) ∆ABC∽∆A1B1C1,相似比为k AB=kA1B1,BC=kB1C1,CA=kC1A1 进而得到结论:相似三角形周长的比等于相似比 延伸问题: 探究: (1) 如图27.2-11(1),∆ABC∽∆A1B1C1,相似比为k1 ,它们的面积比是多少? 6 (1) (2) 图27.2-11 分析:如图27.2-11(1),分别作出∆ABC和∆A1B1C1的高AD和A1D1。 ∠ADB=∠A1D1B1=900又∠B=∠B1 ∆ABD∽∆A1B1D1 =k12 进而得到结论:相似三角形面积比等于相似比的平方 (2)如图27.2-11(2),四边形ABCD相似于四边形A1B1C1D1,相似比为k2,它们的面积比是多少? 分析: k22 k22 相似多边形面积比等于相似比的平方 B D E F A C 应用新知: 例6:如图27.2-12,在∆ABC和∆DEF中, AB=2DE,AC=2DF,∠A=∠D,∆ABC的周长是 24,面积是48,求 ∆DEF的周长和面积。 图27.2-12 分析: ∆ABC和∆DEF中,AB=2DE,AC=2DF 又∠A=∠D ∆ABC∽∆DEF,相似比为 6 ∆DEF的周长=24=12,面积=248=12。 运用提高: 1、 P54练习题1 2、 P54练习题2 课堂小结:说说你在本节课的收获。 布置作业: 1、 必做题:P54练习题3,4 2、 选做题:P57习题27·2题12,13,14。 3.备选题:如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F. (1)求证:△APE∽△ADQ; (2)设AP的长为x,试求△PEF的面积 S△PEF关于x的函数关系式,并求当P在何 处时,S△PEF取得最大值?最大值为多少? (3)当Q在何处时,△ADQ的周长最小? (须给出确定Q在何处的过程或方法,不必给出证明) 设计思想: 本节课主要是让学生理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方,通过探索相似多边形周长的比等于相似比、面积比等于相似比的平方,体验化归思想,学会应用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。因此本教学设计突出了“相似比相似三角形周长的比相似多边形周长的比”、“相似比相似三角形面积的比相似多边形面积的比”等一系列从特殊到一般的过程,以让学生深刻体验到有限数学归纳法的魅力。 6 配套课时练习 1、在△ABC中,∠BAC=,AD⊥BC于D,BD=3,AD=9,则CD= , AB:AC= 。 2、若△ABC∽△DEF, △ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE= cm 3、如图,ΔABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3, 则S四边形DFGE∶S四边形FBCG=_________. 4、等腰三角形ABC和DEF相似,其相似比为3:4,则它们底边上对应高线的比为( ) A、3:4 B、4:3 C、1:2 D、2:1 5、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为( ) A.、0.36平方米 B、0.81平米 C、2平方米 D、3.24平方米 6、如图,分别取等边三角形ABC各边的中点D、E、F,得△DEF.若△ABC的边长为a. (1)△DEF与△ABC相似吗?如果相似,相似比是多少? (2)这两个三角形的面积比与边长之比有什么关系吗? 7、如图,在ΔABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x。(1)当x为何值时,PQ∥BC?(2)当,求的值; 6 8、在△ABC中,AE∶EB=1 ∶2,EF∥BC,AD∥BC交CE的延长线于D,求S△AEF∶S△BCE的值。 9、如图,△ABC是一块锐角三角形余料,边BC=120mm, 高AD=80mm, 要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上, A B C Q M D N P E (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 10、如图,在△ABC中,DE∥FG∥BC,GI∥EF∥AB,若△ADE、△EFG、△GIC的面积分别为20cm2、45cm2、80cm2,求△ABC的面积。 A B C D E 11、有人猜想三角形内角平分线有这样一个性质:如图,在△ABC中,AD平分∠BAC,则.如果你认为这个猜想是正确的,请写出一个完整的推理过程(利用图中辅助线:作BE//AD交CA延长线于E)说明这个猜想的正确性; 如果你认为这个猜想不正确,也请说明理由. 6 参考答案: 1、27;1:9;2、8;3、4:13;4、A;5、D; 6、⑴ 相似,1:4;⑵面积比等于相似比的平方; 7、x=10/3秒,2:9;8、1:6;9⑴48cm,⑵24/7 cm; 10、S△ABC=405cm2; 11、提示:利用“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”和角平分线的定义来证明。证明过程略。 6查看更多