- 2021-11-12 发布 |
- 37.5 KB |
- 26页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017年上海市中考数学试卷
2017年上海市中考数学试卷 一、选择题(本大题共6小题,每小题4分,共24分) 1.(4分)下列实数中,无理数是( ) A.0 B. C.﹣2 D. 2.(4分)下列方程中,没有实数根的是( ) A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0 3.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( ) A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0 4.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是( ) A.0和6 B.0和8 C.5和6 D.5和8 5.(4分)下列图形中,既是轴对称又是中心对称图形的是( ) A.菱形 B.等边三角形 C.平行四边形 D.等腰梯形 6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( ) A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 二、填空题(本大题共12小题,每小题4分,共48分) 7.(4分)计算:2a•a2= . 8.(4分)不等式组的解集是 . 9.(4分)方程=1的解是 . 10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而 .(填“增大”或“减小”) 11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是 微克/立方米. 12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是 . 13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 .(只需写一个) 14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元. 15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为 . 16.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是 . 17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是 . 18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= . 三、解答题(本大题共7小题,共78分) 19.(10分)计算:+(﹣1)2﹣9+()﹣1. 20.(10分)解方程:﹣=1. 21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC. (1)求sinB的值; (2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长. 22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示. 乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y与x的函数解析式:(不要求写出定义域); (2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少. 23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC. (1)求证:四边形ABCD是菱形; (2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形. 24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B. (1)求这条抛物线的表达式和点B的坐标; (2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值; (3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标. 25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙ O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC. (1)求证:△OAD∽△ABD; (2)当△OCD是直角三角形时,求B、C两点的距离; (3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长. 2017年上海市中考数学试卷 参考答案与试题解析 一、选择题(本大题共6小题,每小题4分,共24分) 1.(4分)(2017•上海)下列实数中,无理数是( ) A.0 B. C.﹣2 D. 【分析】根据无理数、有理数的定义即可判定选择项. 【解答】解:0,﹣2,是有理数, 是无理数, 故选:B. 【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式. 2.(4分)(2017•上海)下列方程中,没有实数根的是( ) A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0 【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可. 【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误; B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误; C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误; D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确. 故选D. 【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△ =b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 3.(4分)(2017•上海)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( ) A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0 【分析】根据一次函数的性质得出即可. 【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限, ∴k<0,b>0, 故选B. 【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键. 4.(4分)(2017•上海)数据2、5、6、0、6、1、8的中位数和众数分别是( ) A.0和6 B.0和8 C.5和6 D.5和8 【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决. 【解答】解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8, 位于中间位置的数为5, 故中位数为5, 数据6出现了2次,最多, 故这组数据的众数是6,中位数是5, 故选C. 【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数. 5.(4分)(2017•上海)下列图形中,既是轴对称又是中心对称图形的是( ) A.菱形 B.等边三角形 C.平行四边形 D.等腰梯形 【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解. 【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确; B、等边三角形是轴对称,不是中心对称图形,故本选项错误; C、平行四边形不是轴对称,是中心对称图形,故本选项错误; D、等腰梯形是轴对称,不是中心对称图形,故本选项错误. 故选A. 【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 6.(4分)(2017•上海)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( ) A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案. 【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形; B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形; C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形; D、∠BAC=∠ADB,不能判断四边形ABCD是矩形; 故选:C. 【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键. 二、填空题(本大题共12小题,每小题4分,共48分) 7.(4分)(2017•上海)计算:2a•a2= 2a3 . 【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的指数分别相加,其余字母连同他的指数不变,作为积的因式,计算即可. 【解答】解:2a•a2=2×1a•a2=2a3. 故答案为:2a3. 【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键. 8.(4分)(2017•上海)不等式组的解集是 x>3 . 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式2x>6,得:x>3, 解不等式x﹣2>0,得:x>2, 则不等式组的解集为x>3, 故答案为:x>3. 【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.(4分)(2017•上海)方程=1的解是 x=2 . 【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可. 【解答】解:, 两边平方得,2x﹣3=1, 解得,x=2; 经检验,x=2是方程的根; 故答案为x=2. 【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根. 10.(4分)(2017•上海)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而 减小 .(填“增大”或“减小”) 【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论. 【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3), ∴k=2×3=6>0, ∴在这个函数图象所在的每个象限内,y的值随x的值增大而减小. 故答案为:减小. 【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 11.(4分)(2017•上海)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是 40.5 微克/立方米. 【分析】根据增长率问题的关系式得到算式50×(1﹣10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解. 【解答】解:依题意有 50×(1﹣10%)2 =50×0.92 =50×0.81 =40.5(微克/立方米). 答:今年PM2.5的年均浓度将是40.5微克/立方米. 故答案为:40.5. 【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式. 12.(4分)(2017•上海)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是 . 【分析】 由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率. 【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同, ∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=. 故答案为:. 【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.[来源:Zxxk.Com] 13.(4分)(2017•上海)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 y=2x2﹣1 .(只需写一个) 【分析】根据顶点坐标知其解析式满足y=ax2﹣1,由开口向上知a>0,据此写出一个即可. 【解答】解:∵抛物线的顶点坐标为(0,﹣1), ∴该抛武线的解析式为y=ax2﹣1, 又∵二次函数的图象开口向上, ∴a>0, ∴这个二次函数的解析式可以是y=2x2﹣1, 故答案为:y=2x2﹣1. 【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键. 14.(4分)(2017•上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 80 万元. 【分析】利用二月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数. 【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元), 则该企业第一季度月产值的平均值是×240=80(万元). 故答案是:80. 【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数. 15.(4分)(2017•上海)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为 +2 . 【分析】根据=+,只要求出即可解决问题. 【解答】解:∵AB∥CD, ∴==, ∴ED=2AE, ∵=, ∴=2, ∴=+=+2. 【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题. 16.(4分)(2017•上海)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是 45 . 【分析】分两种情形讨论,分别画出图形求解即可. 【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°, ∴旋转角n=45时,EF∥AB. ②如图2中,EF∥AB时,∠ACE+∠A=180°, ∴∠ACE=135° ∴旋转角n=360﹣135=225, ∵0<n<180, ∴此种情形不合题意, 故答案为45[来源:学科网] 【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 17.(4分)(2017•上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是 8<r<10 . 【分析】先计算两个分界处r的值:即当C在⊙A上和当B在⊙A上,再根据图形确定r的取值. 【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时, ⊙A的半径为:AC=AD=3, ⊙B的半径为:r=AB+AD=5+3=8; 如图2,当B在⊙A上,⊙B与⊙A内切时, ⊙A的半径为:AB=AD=5, ⊙B的半径为:r=2AB=10; ∴⊙B的半径长r的取值范围是:8<r<10. 故答案为:8<r<10. 【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外. 18.(4分)(2017•上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= . 【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,只要证明△BEC是直角三角形即可解决问题. 【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC. 易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线, ∵△OBC是等边三角形, ∴∠OBC=∠OCB=∠BOC=60°, ∵OE=OC, ∴∠OEC=∠OCE, ∵∠BOC=∠OEC+∠OCE, ∴∠OEC=∠OCE=30°, ∴∠BCE=90°, ∴△BEC是直角三角形, ∴=cos30°=, ∴λ6=, 故答案为. 【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题. 三、解答题(本大题共7小题,共78分) 19.(10分)(2017•上海)计算:+(﹣1)2﹣9+()﹣1. 【分析】根据负整数指数幂和分数指数幂的意义计算. 【解答】解:原式=3+2﹣2+1﹣3+2 =+2. 【点评】 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 20.(10分)(2017•上海)解方程:﹣=1. 【分析】两边乘x(x﹣3)把分式方程转化为整式方程即可解决问题. 【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x, ∴x2﹣2x﹣3=0, ∴(x﹣3)(x+1)=0, ∴x=3或﹣1, 经检验x=3是原方程的增根, ∴原方程的解为x=﹣1. 【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验. 21.(10分)(2017•上海)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC. (1)求sinB的值; (2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长. 【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可; (2)由EF∥AD,BE=2AE,可得===,求出EF、DF即可利用勾股定理解决问题; 【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6, ∴AB===3, ∴sinB===. (2)∵EF∥AD,BE=2AE, ∴===, ∴==, ∴EF=4,BF=6, ∴DF=3, 在Rt△DEF中,DE===5. 【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 22.(10分)(2017•上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示. 乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y与x的函数解析式:(不要求写出定义域); (2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少. 【分析】(1)利用待定系数法即可解决问题; (2)绿化面积是1200平方米时,求出两家的费用即可判断; 【解答】解:(1)设y=kx+b,则有, 解得, ∴y=5x+400. (2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元, ∵6300<6400 ∴选择乙公司的服务,每月的绿化养护费用较少. 【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键. [来源:Z。xx。k.Com] 23.(12分)(2017•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC. (1)求证:四边形ABCD是菱形; (2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形. [来源:学科网ZXXK] 【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠ CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形; (2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形. 【解答】证明:(1)在△ADE与△CDE中, , ∴△ADE≌△CDE, ∴∠ADE=∠CDE, ∵AD∥BC, ∴∠ADE=∠CBD, ∴∠CDE=∠CBD, ∴BC=CD, ∵AD=CD, ∴BC=AD, ∴四边形ABCD为平行四边形, ∵AD=CD, ∴四边形ABCD是菱形; (2)∵BE=BC ∴∠BCE=∠BEC, ∵∠CBE:∠BCE=2:3, ∴∠CBE=180×=45°, ∵四边形ABCD是菱形, ∴∠ABE=45°, ∴∠ABC=90°, ∴四边形ABCD是正方形. 【点评】 本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键. 24.(12分)(2017•上海)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B. (1)求这条抛物线的表达式和点B的坐标; (2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值; (3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标. 【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值; (2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可; (3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标. 【解答】解:(1)∵抛物线的对称轴为x=1, ∴x=﹣=1,即=1,解得b=2. ∴y=﹣x2+2x+c. 将A(2,2)代入得:﹣4+4+c=2,解得:c=2. ∴抛物线的解析式为y=﹣x2+2x+2.[来源:学+科+网Z+X+X+K] 配方得:y=﹣(x﹣1)2+3. ∴抛物线的顶点坐标为(1,3). (2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2). ∵M(1,m),C(1,2), ∴MC=m﹣2. ∴cot∠AMB==m﹣2. (3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上, ∴抛物线向下平移了3个单位. ∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3. ∵OP=OQ, ∴点O在PQ的垂直平分线上. 又∵QP∥y轴, ∴点Q与点P关于x轴对称. ∴点Q的纵坐标为﹣. 将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=. ∴点Q的坐标为(,﹣)或(,﹣). 【点评】 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键. 25.(14分)(2017•上海)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC. (1)求证:△OAD∽△ABD; (2)当△OCD是直角三角形时,求B、C两点的距离; (3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长. 【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD; (2)如图2中,当△OCD是直角三角形时,需要分类讨论解决问题; (3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=AC•CD,列出方程即可解决问题; 【解答】(1)证明:如图1中, 在△AOB和△AOC中, , ∴△AOB≌△AOC, ∴∠C=∠B, ∵OA=OC, ∴∠OAC=∠C=∠B, ∵∠ADO=∠ADB, ∴△OAD∽△ABD. (2)如图2中,①当∠ODC=90°时, ∵BD⊥AC,OA=OC, ∴AD=DC, ∴BA=BC=AC, ∴△ABC是等边三角形, 在Rt△OAD中,∵OA=1,∠OAD=30°, ∴OD=OA=, ∴AD==, ∴BC=AC=2AD=. ②∠COD=90°,∠BOC=90°,BC==, ③∠OCD显然≠90°,不需要讨论. 综上所述,BC=或. (3)如图3中,作OH⊥AC于H,设OD=x. ∵△DAO∽△DBA, ∴==, ∴==, ∴AD=,AB=, ∵S2是S1和S3的比例中项, ∴S22=S1•S3, ∵S2=AD•OH,S1=S△OAC=•AC•OH,S3=•CD•OH, ∴(AD•OH)2=•AC•OH••CD•OH, ∴AD2=AC•CD, ∵AC=AB.CD=AC﹣AD=﹣, ∴()2=•(﹣), 整理得x2+x﹣1=0, 解得x=或, 经检验:x=是分式方程的根,且符合题意, ∴OD=. (也可以利用角平分线的性质定理:==,黄金分割点的性质解决这个问题) 【点评】本题考查圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题. 查看更多