- 2021-11-12 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2012年广东省珠海市中考数学试题(含答案)
2012年珠海市初中毕业生学业考试 数 学 一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2的倒数是 A.2 B.-2 C. D. 2.计算的结果为 A. B. C. D. 3.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为.二月份白菜价格最稳定的市场是 A.甲 B.乙 C.丙 D.丁 4、下列图形中不是中心对称图形的是 A.矩形 B.菱形 C.平行四边形 D.正五边形 5.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为 A.30°B.45°C.60°D.90° 二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.计算 . 7.使有意义的取值范围是 . 8.如图,矩形OABC的顶点A、C分别在轴、轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为 . 9.不等式组的解集是 . 10.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE= . O C A B D E F G P x y 第8题图= O A B C D 第10题图 三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本小题满分6分)计算:. 12.(本小题满分6分)先化简,再求值:,其中. A B C D E M 第13题图 13.(本小题满分6分)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线. (1)用尺规作图方法,作∠ADC的平分线DN; (保留作图痕迹,不写作法和证明) (2)设DN与AM交于点F,判断△ADF的形状. (只写结果) 14.(本小题满分6分)已知关于的一元二次方程. (1)当m=3时,判断方程的根的情况; (2)当m=-3时,求方程的根. 15.(本小题满分6分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支. (1)求第一次每支铅笔的进价是多少元? (2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元? C O D A B 第16题图 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:) 17.(本题满分7分)某学校课程安排中,各班每天下午只安排三节课. (1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率; (2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果). A B C D A’ B’ D’ E 第18题图 18.(本题满分7分)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A’B’CD’(此时,点B’落在对角线AC上,点A’落在CD的延长线上),A’B’交AD于点E,连结AA’、CE. 求证:(1)△ADA’ ≌△CDE; (2)直线CE是线段AA’的垂直平分线. A B C O 第19题图 19.(本题满分7分)如图,二次函数的图象与轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数的图象经过该二次函数图象上点A(1,0)及点B. (1)求二次函数与一次函数的解析式; (2)根据图象,写出满足≥的的取值范围. 五、解答题(三)(本大题3小题,每小题9分,共27分) 20.(本题满分9分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …… 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据上述各式反映的规律填空,使式子称为“数字对称等式”: ①52× = ×25; ② ×396=693× . (2)设这类等式左边两位数的十位数字为,个位数字为,且2≤≤9,写出表示“数字对称等式”一般规律的式子(含、),并证明. 21.(本题满分9分)已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上. (1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果); (2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论; (3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD. 第21题图3 第21题图2 第21题图1 22.(本题满分9分)如图,在等腰梯形ABCD中,ABDC,AB=,DC=,高CE=,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为、被直线RQ扫过的图形面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为秒. (1)填空:∠AHB= ;AC= ; (2)若,求; (3)设,求的变化范围.查看更多