2018年天津市中考数学试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018年天津市中考数学试卷

‎2018年天津市中考数学试卷 ‎ ‎ 一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.(3.00分)计算(﹣3)2的结果等于(  )‎ A.5 B.﹣5 C.9 D.﹣9‎ ‎2.(3.00分)cos30°的值等于(  )‎ A. B. C.1 D.‎ ‎3.(3.00分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为(  )‎ A.0.778×105 B.7.78×104 C.77.8×103 D.778×102‎ ‎4.(3.00分)下列图形中,可以看作是中心对称图形的是(  )‎ A. B. C. D.‎ ‎5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )‎ A. B. C. D.‎ ‎6.(3.00分)估计的值在(  )‎ A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 ‎7.(3.00分)计算的结果为(  )‎ A.1 B.3 C. D.‎ ‎8.(3.00分)方程组的解是(  )‎ A. B. C. D.‎ ‎9.(3.00分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是(  )‎ A.x1<x2<x3 B.x2<x1<x3 C.x2<x3<x1 D.x3<x2<x1‎ ‎10.(3.00分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是(  )‎ A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB ‎11.(3.00分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是(  )‎ A.AB B.DE C.BD D.AF ‎12.(3.00分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:‎ ‎①抛物线经过点(1,0);‎ ‎②方程ax2+bx+c=2有两个不相等的实数根;‎ ‎③﹣3<a+b<3‎ 其中,正确结论的个数为(  )‎ A.0 B.1 C.2 D.3‎ ‎ ‎ 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎13.(3.00分)计算2x4•x3的结果等于   .‎ ‎14.(3.00分)计算(+)(﹣)的结果等于   .‎ ‎15.(3.00分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是   .‎ ‎16.(3.00分)将直线y=x向上平移2个单位长度,平移后直线的解析式为   .‎ ‎17.(3.00分)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为   .‎ ‎18.(3.00分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,‎ ‎(I)∠ACB的大小为   (度);‎ ‎(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明)   .‎ ‎ ‎ 三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)‎ ‎19.(8.00分)解不等式组 请结合题意填空,完成本题的解答.‎ ‎(I)解不等式①,得   ;‎ ‎(l1)解不等式②,得   ;‎ ‎(Ⅲ)把不等式①和②的解集在数轴上表示出来;‎ ‎(Ⅳ)原不等式组的解集为   .‎ ‎20.(8.00分)某养鸡场有2500只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:‎ ‎(I)图①中m的值为   ;‎ ‎(ll)求统计的这组数据的平均数、众数和中位数;‎ ‎(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?‎ ‎21.(10.00分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,‎ ‎(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;‎ ‎(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.‎ ‎22.(10.00分)如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60.‎ ‎23.(10.00分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.‎ 设小明计划今年夏季游泳次数为x(x为正整数).‎ ‎(I)根据题意,填写下表:‎ 游泳次数 ‎10‎ ‎15‎ ‎20‎ ‎…‎ x 方式一的总费用(元)‎ ‎150‎ ‎175‎ ‎   ‎ ‎…‎ ‎   ‎ 方式二的总费用(元)‎ ‎90‎ ‎135‎ ‎   ‎ ‎…‎ ‎   ‎ ‎(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?‎ ‎(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.‎ ‎24.(10.00分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.‎ ‎(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;‎ ‎(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.‎ ‎①求证△ADB≌△AOB;‎ ‎②求点H的坐标.‎ ‎(Ⅲ)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).‎ ‎25.(10.00分)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.‎ ‎(Ⅰ)当抛物线经过点A时,求顶点P的坐标;‎ ‎(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;‎ ‎(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.‎ ‎ ‎ ‎2018年天津市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.(3.00分)计算(﹣3)2的结果等于(  )‎ A.5 B.﹣5 C.9 D.﹣9‎ ‎【分析】根据有理数的乘方法则求出即可.‎ ‎【解答】解:(﹣3)2=9,‎ 故选:C.‎ ‎ ‎ ‎2.(3.00分)cos30°的值等于(  )‎ A. B. C.1 D.‎ ‎【分析】根据特殊角的三角函数值直接解答即可.‎ ‎【解答】解:cos30°=.‎ 故选:B.‎ ‎ ‎ ‎3.(3.00分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为(  )‎ A.0.778×105 B.7.78×104 C.77.8×103 D.778×102‎ ‎【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.‎ ‎【解答】解:77800=7.78×104,‎ 故选:B.‎ ‎ ‎ ‎4.(3.00分)下列图形中,可以看作是中心对称图形的是(  )‎ A. B. C. D.‎ ‎【分析】根据中心对称图形的概念对各选项分析判断即可得解.‎ ‎【解答】解:A、是中心对称图形,故本选项正确;‎ B、不是中心对称图形,故本选项错误;‎ C、不是中心对称图形,故本选项错误;‎ D、不是中心对称图形,故本选项错误.‎ 故选:A.‎ ‎ ‎ ‎5.(3.00分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )‎ A. B. C. D.‎ ‎【分析】根据从正面看得到的图形是主视图,可得答案.‎ ‎【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形,‎ 故选:A.‎ ‎ ‎ ‎6.(3.00分)估计的值在(  )‎ A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 ‎【分析】先估算出的范围,再得出选项即可.‎ ‎【解答】解:8<<9,‎ 即在8到9之间,‎ 故选:D.‎ ‎ ‎ ‎7.(3.00分)计算的结果为(  )‎ A.1 B.3 C. D.‎ ‎【分析】原式利用同分母分式的减法法则计算即可求出值.‎ ‎【解答】解:原式==,‎ 故选:C.‎ ‎ ‎ ‎8.(3.00分)方程组的解是(  )‎ A. B. C. D.‎ ‎【分析】方程组利用代入消元法求出解即可.‎ ‎【解答】解:,‎ ‎②﹣①得:x=6,‎ 把x=6代入①得:y=4,‎ 则方程组的解为,‎ 故选:A.‎ ‎ ‎ ‎9.(3.00分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是(  )‎ A.x1<x2<x3 B.x2<x1<x3 C.x2<x3<x1 D.x3<x2<x1‎ ‎【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.‎ ‎【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,‎ ‎∴x1=﹣2,x2=﹣6,x3=6;‎ 又∵﹣6<﹣2<6,‎ ‎∴x2<x1<x3;‎ 故选:B.‎ ‎ ‎ ‎10.(3.00分)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是(  )‎ A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB ‎【分析】先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.‎ ‎【解答】解:∵△BDE由△BDC翻折而成,‎ ‎∴BE=BC.‎ ‎∵AE+BE=AB,‎ ‎∴AE+CB=AB,‎ 故D正确,‎ 故选:D.‎ ‎ ‎ ‎11.(3.00分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是(  )‎ A.AB B.DE C.BD D.AF ‎【分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,依据△ABF≌△CDE,即可得到AP+EP最小值等于线段AF的长.‎ ‎【解答】解:如图,连接CP,‎ 由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP,‎ ‎∴AP=CP,‎ ‎∴AP+PE=CP+PE,‎ ‎∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,‎ 此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE,‎ ‎∴AF=CE,‎ ‎∴AP+EP最小值等于线段AF的长,‎ 故选:D.‎ ‎ ‎ ‎12.(3.00分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:‎ ‎①抛物线经过点(1,0);‎ ‎②方程ax2+bx+c=2有两个不相等的实数根;‎ ‎③﹣3<a+b<3‎ 其中,正确结论的个数为(  )‎ A.0 B.1 C.2 D.3‎ ‎【分析】①由抛物线过点(﹣1,0),对称轴在y轴右侧,即可得出当x=1时y>0,结论①错误;‎ ‎②过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;‎ ‎③由当x=1时y>0,可得出a+b>﹣c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>﹣3,由抛物线过点(﹣1,0)可得出a+b=2a+‎ c,结合a<0、c=3可得出a+b<3,综上可得出﹣3<a+b<3,结论③正确.此题得解.‎ ‎【解答】解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧,‎ ‎∴当x=1时y>0,结论①错误;‎ ‎②过点(0,2)作x轴的平行线,如图所示.‎ ‎∵该直线与抛物线有两个交点,‎ ‎∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;‎ ‎③∵当x=1时y=a+b+c>0,‎ ‎∴a+b>﹣c.‎ ‎∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),‎ ‎∴c=3,‎ ‎∴a+b>﹣3.‎ ‎∵当a=﹣1时,y=0,即a﹣b+c=0,‎ ‎∴b=a+c,‎ ‎∴a+b=2a+c.‎ ‎∵抛物线开口向下,‎ ‎∴a<0,‎ ‎∴a+b<c=3,‎ ‎∴﹣3<a+b<3,结论③正确.‎ 故选:C.‎ ‎ ‎ 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎13.(3.00分)计算2x4•x3的结果等于 2x7 .‎ ‎【分析】单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.依此即可求解.‎ ‎【解答】解:2x4•x3=2x7.‎ 故答案为:2x7.‎ ‎ ‎ ‎14.(3.00分)计算(+)(﹣)的结果等于 3 .‎ ‎【分析】利用平方差公式计算即可.‎ ‎【解答】解:(+)(﹣)‎ ‎=()2﹣()2‎ ‎=6﹣3‎ ‎=3,‎ 故答案为:3.‎ ‎ ‎ ‎15.(3.00分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是  .‎ ‎【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.‎ ‎【解答】解:∵袋子中共有11个小球,其中红球有6个,‎ ‎∴摸出一个球是红球的概率是,‎ 故答案为:.‎ ‎ ‎ ‎16.(3.00分)将直线y=x向上平移2个单位长度,平移后直线的解析式为 y=x+2 .‎ ‎【分析】直接根据“上加下减,左加右减”的平移规律求解即可.‎ ‎【解答】解:将直线y=2x直线y=x向上平移2个单位长度,平移后直线的解析式为y=x+2.‎ 故答案为:y=x+2.‎ ‎ ‎ ‎17.(3.00分)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为  .‎ ‎【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.‎ ‎【解答】解:连接DE,‎ ‎∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,‎ ‎∴DE是△ABC的中位线,‎ ‎∴DE=2,且DE∥AC,BD=BE=EC=2,‎ ‎∵EF⊥AC于点F,∠C=60°,‎ ‎∴∠FEC=30°,∠DEF=∠EFC=90°,‎ ‎∴FC=EC=1,‎ 故EF==,‎ ‎∵G为EF的中点,‎ ‎∴EG=,‎ ‎∴DG==.‎ 故答案为:.‎ ‎ ‎ ‎18.(3.00分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,‎ ‎(I)∠ACB的大小为 90 (度);‎ ‎(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明) 如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求 .‎ ‎【分析】(I)根据勾股定理可求AB,AC,BC的长,再根据勾股定理的逆定理可求∠ACB的大小;‎ ‎(Ⅱ)通过将点B以A为中心,取旋转角等于∠BAC旋转,找到线段BC选择后所得直线FG,只需找到点C到FG的垂足即为P′‎ ‎【解答】解:(1)由网格图可知 AC=‎ BC=‎ AB=‎ ‎∵AC2+BC2=AB2‎ ‎∴由勾股定理逆定理,△ABC为直角三角形.‎ ‎∴∠ACB=90°‎ 故答案为:90°‎ ‎(Ⅱ)作图过程如下:‎ 取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求 证明:连CF ‎∵AC,CF为正方形网格对角线 ‎∴A、C、F共线 ‎∴AF=5=AB 由图形可知:GC=,CF=2,‎ ‎∵AC=,BC=‎ ‎∴△ACB∽△GCF ‎∴∠GFC=∠B ‎∵AF=5=AB ‎∴当BC边绕点C逆时针选择∠CAB时,点B与点F重合,点C在射线FG上.‎ 由作图可知T为AB中点 ‎∴∠TCA=∠TAC ‎∴∠F+∠P′CF=∠B+∠TCA=∠B+∠TAC=90°‎ ‎∴CP′⊥GF 此时,CP′最短 故答案为:如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求 ‎ ‎ 三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)‎ ‎19.(8.00分)解不等式组 请结合题意填空,完成本题的解答.‎ ‎(I)解不等式①,得 x≥﹣2 ;‎ ‎(l1)解不等式②,得 x≤1 ;‎ ‎(Ⅲ)把不等式①和②的解集在数轴上表示出来;‎ ‎(Ⅳ)原不等式组的解集为 ﹣2≤x≤1 .‎ ‎【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.‎ ‎【解答】解:‎ ‎(I)解不等式①,得x≥﹣2;‎ ‎(l1)解不等式②,得x≤1;‎ ‎(Ⅲ)把不等式①和②的解集在数轴上表示出来为:‎ ‎(Ⅳ)原不等式组的解集为﹣2≤x≤1.‎ 故答案为:x≥﹣2,x≤1,﹣2≤x≤1.‎ ‎ ‎ ‎20.(8.00分)某养鸡场有2500只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:‎ ‎(I)图①中m的值为 28 ;‎ ‎(ll)求统计的这组数据的平均数、众数和中位数;‎ ‎(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?‎ ‎【分析】(I)根据各种质量的百分比之和为1可得m的值;‎ ‎(II)根据众数、中位数、加权平均数的定义计算即可;‎ ‎(III)将样本中质量为2.0kg数量所占比例乘以总数量2500即可.‎ ‎【解答】解:(I)图①中m的值为100﹣(32+8+10+22)=28,‎ 故答案为:28;‎ ‎(II)这组数据的平均数为=1.52(kg),‎ 众数为1.8kg,中位数为=1.5kg;‎ ‎(III)估计这2500只鸡中,质量为2.0kg的约有2500×=200只.‎ ‎ ‎ ‎21.(10.00分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,‎ ‎(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;‎ ‎(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的大小.‎ ‎【分析】(Ⅰ)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;‎ ‎(Ⅱ)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.‎ ‎【解答】解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,‎ ‎∴∠ACB=90°,‎ ‎∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,‎ ‎∵D为的中点,∠AOB=180°,‎ ‎∴∠AOD=90°,‎ ‎∴∠ACD=45°;‎ ‎(Ⅱ)连接OD,‎ ‎∵DP切⊙O于点D,‎ ‎∴OD⊥DP,即∠ODP=90°,‎ 由DP∥AC,又∠BAC=38°,‎ ‎∴∠P=∠BAC=38°,‎ ‎∵∠AOD是△ODP的一个外角,‎ ‎∴∠AOD=∠P+∠ODP=128°,‎ ‎∴∠ACD=64°,‎ ‎∵OC=OA,∠BAC=38°,‎ ‎∴∠OCA=∠BAC=38°,‎ ‎∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.‎ ‎ ‎ ‎22.(10.00分)如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60.‎ ‎【分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应用其公共边构造关系式,进而可求出答案.‎ ‎【解答】解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形,‎ ‎∴AE=BC=78,AB=CE,‎ 在Rt△ACE中,EC=AE•tan58°≈125(m)‎ 在RtAED中,DE=AE•tan48°,‎ ‎∴CD=EC﹣DE=AE•tan58°﹣AE•tan48°=78×1.6﹣78×1.11≈38(m),‎ 答:甲、乙建筑物的高度AB为125m,DC为38m.‎ ‎ ‎ ‎23.(10.00分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.‎ 设小明计划今年夏季游泳次数为x(x为正整数).‎ ‎(I)根据题意,填写下表:‎ 游泳次数 ‎10‎ ‎15‎ ‎20‎ ‎…‎ x 方式一的总费用(元)‎ ‎150‎ ‎175‎ ‎ 200 ‎ ‎…‎ ‎ 100+5x ‎ 方式二的总费用(元)‎ ‎90‎ ‎135‎ ‎ 180 ‎ ‎…‎ ‎ 9x ‎ ‎(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?‎ ‎(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.‎ ‎【分析】(Ⅰ)根据题意可以将表格中空缺的部分补充完整;‎ ‎(Ⅱ)根据题意可以求得当费用为270元时,两种方式下的游泳次数;‎ ‎(Ⅲ)根据题意可以计算出x在什么范围内,哪种付费更合算.‎ ‎【解答】解:(I)当x=20时,方式一的总费用为:100+20×‎ ‎5=200,方式二的费用为:20×9=180,‎ 当游泳次数为x时,方式一费用为:100+5x,方式二的费用为:9x,‎ 故答案为:200,100+5x,180,9x;‎ ‎(II)方式一,令100+5x=270,解得:x=34,‎ 方式二、令9x=270,解得:x=30;‎ ‎∵34>30,‎ ‎∴选择方式一付费方式,他游泳的次数比较多;‎ ‎(III)令100+5x<9x,得x>25,‎ 令100+5x=9x,得x=25,‎ 令100+5x>9x,得x<25,‎ ‎∴当20<x<25时,小明选择方式二的付费方式,‎ 当x=25时,小明选择两种付费方式一样,‎ 但x>25时,小明选择方式一的付费方式.‎ ‎ ‎ ‎24.(10.00分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.‎ ‎(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;‎ ‎(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.‎ ‎①求证△ADB≌△AOB;‎ ‎②求点H的坐标.‎ ‎(Ⅲ)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).‎ ‎【分析】(Ⅰ)如图①,在Rt△ACD中求出CD即可解决问题;‎ ‎(Ⅱ)①根据HL证明即可;‎ ‎②,设AH=BH=m,则HC=BC﹣BH=5﹣m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;‎ ‎(Ⅲ)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;‎ ‎【解答】解:(Ⅰ)如图①中,‎ ‎∵A(5,0),B(0,3),‎ ‎∴OA=5,OB=3,‎ ‎∵四边形AOBC是矩形,‎ ‎∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,‎ ‎∵矩形ADEF是由矩形AOBC旋转得到,‎ ‎∴AD=AO=5,‎ 在Rt△ADC中,CD==4,‎ ‎∴BD=BC﹣CD=1,‎ ‎∴D(1,3).‎ ‎(Ⅱ)①如图②中,‎ 由四边形ADEF是矩形,得到∠ADE=90°,‎ ‎∵点D在线段BE上,‎ ‎∴∠ADB=90°,‎ 由(Ⅰ)可知,AD=AO,又AB=AB,∠AOB=90°,‎ ‎∴Rt△ADB≌Rt△AOB(HL).‎ ‎②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,‎ 又在矩形AOBC中,OA∥BC,‎ ‎∴∠CBA=∠OAB,‎ ‎∴∠BAD=∠CBA,‎ ‎∴BH=AH,设AH=BH=m,则HC=BC﹣BH=5﹣m,‎ 在Rt△AHC中,∵AH2=HC2+AC2,‎ ‎∴m2=32+(5﹣m)2,‎ ‎∴m=,‎ ‎∴BH=,‎ ‎∴H(,3).‎ ‎(Ⅲ)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5﹣)=,‎ 当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=.‎ 综上所述,≤S≤.‎ ‎ ‎ ‎25.(10.00分)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.‎ ‎(Ⅰ)当抛物线经过点A时,求顶点P的坐标;‎ ‎(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;‎ ‎(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.‎ ‎【分析】(Ⅰ)将点A坐标代入解析式求得m的值即可得;‎ ‎(Ⅱ)先求出顶点P的坐标(﹣,﹣),根据∠AOP=45°知点P在第四象限且PQ=OQ,列出关于m的方程,解之可得;‎ ‎(Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)知H(2,4),过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,证△ADE≌△HAG得DE=AG=1、AE=HG=4,据此知点D的坐标为(﹣3,1)或(5,﹣1),再求出直线DH的解析式,将点P的坐标代入求得m的值即可得出答案.‎ ‎【解答】解:(Ⅰ)∵抛物线y=x2+mx﹣2m经过点A(1,0),‎ ‎∴0=1+m﹣2m,‎ 解得:m=1,‎ ‎∴抛物线解析式为y=x2+x﹣2,‎ ‎∵y=x2+x﹣2=(x+)2﹣,‎ ‎∴顶点P的坐标为(﹣,﹣);‎ ‎(Ⅱ)抛物线y=x2+mx﹣2m的顶点P的坐标为(﹣,﹣),‎ 由点A(1,0)在x轴的正半轴上,点P在x轴的下方,∠AOP=45°知点P在第四象限,‎ 如图1,过点P作PQ⊥x轴于点Q,‎ 则∠POQ=∠OPQ=45°,‎ 可知PQ=OQ,即=﹣,‎ 解得:m1=0,m2=﹣10,‎ 当m=0时,点P不在第四象限,舍去;‎ ‎∴m=﹣10,‎ ‎∴抛物线的解析式为y=x2﹣10x+20;‎ ‎(Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)可知当x=2时,无论m取何值时y都等于﹣4,‎ ‎∴点H的坐标为(2,4),‎ 过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,‎ 则∠DEA=∠AGH=90°,‎ ‎∵∠DAH=90°,∠AHD=45°,‎ ‎∴∠ADH=45°,‎ ‎∴AH=AD,‎ ‎∵∠DAE+∠HAG=∠AHG+∠HAG=90°,‎ ‎∴∠DAE=∠AHG,‎ ‎∴△ADE≌△HAG,‎ ‎∴DE=AG=1、AE=HG=4,‎ 则点D的坐标为(﹣3,1)或(5,﹣1);‎ ‎①当点D的坐标为(﹣3,1)时,可得直线DH的解析式为y=x+,‎ ‎∵点P(﹣,﹣)在直线y=x+上,‎ ‎∴﹣=×(﹣)+,‎ 解得:m1=﹣4、m2=﹣,‎ 当m=﹣4时,点P与点H重合,不符合题意,‎ ‎∴m=﹣;‎ ‎②当点D的坐标为(5,﹣1)时,可得直线DH的解析式为y=﹣x+,‎ ‎∵点P(﹣,﹣)在直线y=﹣x+上,‎ ‎∴﹣=﹣×(﹣)+,‎ 解得:m1=﹣4(舍),m2=﹣,‎ 综上,m=﹣或m=﹣,‎ 则抛物线的解析式为y=x2﹣x+或y=x2﹣x+.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档