- 2021-11-10 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2009年福建省宁德市中考数学试卷及答案
2009年宁德市初中毕业、升学考试 数 学 试 题 (全卷共6页,三大题,共26小题;满分150分;考试时间120分钟) 友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效. 参考公式:抛物线的顶点坐标为 ,对称轴 . 一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.-3的绝对值是( ) A.3 B.-3 C. D. 2.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为( ) A.0.85×104亿元 B.8.5×103亿元 C.8.5×104亿元 D.85×102亿元 3.在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A. B. C . D. 4.下列运算正确的是( ) A. B. C. D. 5.如图所示几何体的左视图是( ) 第5题图 k 正面 A. B. C. D. 6.不等式组的解集是( ) A.>1 B.<2 C.1<<2 D.无解 B E C O D A 第7题图 7.如图,已知直线AB、CD相交于点O,OE平分∠COB, 若∠EOB=55º,则∠BOD的度数是( ) A.35º B.55º C.70º D.110º 8.为配合世界地质公园申报,闽东某景区管理部门随机调查了1000名游客,其中有800人对景区表示满意.对于这次调查以下说法正确的是( ) O A B 第9题图 A.若随机访问一位游客,则该游客表示满意的概率约为0.8 B.到景区的所有游客中,只有800名游客表示满意 C.若随机访问10位游客,则一定有8位游客表示满意 D.本次调查采用的方式是普查 M N P 图(1) 第10题图 图(2) 9.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为( ) A. B.4 C. D.2 10.图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为( ) A.30º B.36º C.45º D.72º 0 a b 第11题图 二、填空题(共8小题,每小题3分,满分24分.请将答案用黑色签字笔填入答题卡的相应位置) 11.实数在数轴上对应点的位置如图所示, 则a b.(填“>”、“<”或“=”) B C A O 第12题图 12.如图,AB是⊙O的直径,AC是弦,若∠ACO = 32°,则∠COB的度数等于 . 13.在本赛季NBA比赛中,姚明最后六场的得分情况如下:17、15、21、28、12、19,这组数据的极差为 . 第15题图 C O D E F A B 14.方程的解是______________. 15.如图,△ABC与△DEF是位似图形,位似比为2∶3,已知AB=4,则DE的长为 ____. 第17题图 16.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y= . y x O A B P C D 第18题图 17.小华为参加毕业晚会演出,准备制作一顶圆锥形纸帽,如图所示,纸帽的底面半径为9cm,母线长为30cm,制作这个纸帽至少需要纸板的面积至少为 cm2.(结果保留) 18.如图,已知点A、B在双曲线(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k= . 三、解答题(满分86分.请将解答过程填入答题卡的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑) 19.(每小题8分,满分16分) (1)计算: (2)解分式方程: A F E D C B 20.(本题满分8分)如图:点A、D、B、E在同一直线上,AD=BE,AC=DF,AC∥DF,请从图中找出一个与∠E相等的角,并加以证明.(不再添加其他的字母与线段) 21.(本题满分8分)某刊物报道:“2008年12月15日,两岸海上直航、空中直航和直接通邮启动,‘大三通’基本实现.‘大三通’最直接好处是省时间和省成本,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时, 以两岸每年往来合计500万人次计算,则共可为民众节省2900万小时……”根据文中信息,求每年采用空运和海运往来两岸的人员各有多少万人次. 22.(本题满分8分)为应对全球经济危机,中国政府投资40000亿元人民币以拉动内需, 5月21日国家发改委公布了40000亿元投资构成.具体内容如下: 消息来源于: 廉租住房等 保障性住房 农村民生工程和基础设施 铁路等重大基础设施建设和城市电网改造 卫生、教育等社会事业发展 自主创新和产业结构调整 节能减排和生态建设工程 汶川地震灾后恢复重建 单位:亿元 重 点 投 向 资金 测算 廉租住房等保障性住房 4000 农村民生工程和基础设施 3700 铁路等重大基础设施建设和 城市电网改造 卫生、教育等社会事业发展 1500 节能减排和生态建设工程 2100 自主创新和产业结构调整 3700 汶川地震灾后恢复重建 请你根据统计图表中所提供的信息,完成下列问题: (1)在统计表中,投向“铁路等重大基础设施建设和城市电网改造”的资金测算是 亿元,投向“汶川地震灾后恢复重建”的资金测算是 亿元; (2)在扇形统计图中,“卫生、教育等社会事业发展”部分所占的百分数是 ,“节能减排和生态建设工程”部分所占的百分数是 ; (3)统计表“资金测算”栏目下的七个数据中,中位数是 亿元,众数是 亿元; (4)在扇形统计图中,“廉租住房等保障性住房”部分所占的圆心角为 度. B C A O D 100º 32 cm 图(2) 23.(本题满分10分)某大学计划为新生配备如图(1)所示的折叠椅.图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长相等,O是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm,∠DOB=100°,那么椅腿的长AB和篷布面的宽AD各应设计为多少cm?(结果精确到0.1cm) 图(1) 24.(本题满分10分)在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示). A B C (1)小明的这三件文具中,可以看做是轴对称图形的是 (填字母代号); (2)请用这三个图形中的两个拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种); (3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少?(请画树状图或列表计算) 25.(本题满分13分)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG. (1)连接GD,求证:△ADG≌△ABE;(4分) (2)连接FC,观察并猜测∠FCN的度数,并说明理由;(4分) (3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.(5分) 图(2) M B E A C D F G N N M B E A C D F G 图(1) 26.(本题满分13分)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1. (1)求P点坐标及a的值;(4分) (2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分) (3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.(5分) y x A O B P N 图2 C1 C4 Q E F 图(2) y x A O B P M 图1 C1 C2 C3 图(1) 2009年宁德市初中毕业、升学考试 数学试题参考答案及评分标准 (1)本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分. (2)对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分,但原则上不超过后面应得的分数的一半;如果有较严重的错误,就不给分. (3)解答右端所注分数表示考生正确作完该步应得的累加分数. (4)评分只给整数分,选择题和填空题均不给中间分. 一.选择题;(本大题共有10小题,每小题4分,共40分) 1.A;2.B; 3.D; 4.D; 5.C; 6.C 7.C 8.A 9.B 10.B 二.填空题:(本大题共有8小题,每小题3分,共24分) 11.>; 13.16; 15.6; 17.270; 12.64º; 14.x1=0, x2=4; 16.5 x+10; 18.12; 三.解答题:(本大题有8题,共86分) 19.(本题满分16分) (1)解: 原式=3+1-1 ………………6分 =3 ………………8分 (2)解:方程两边同乘以x-4,得 3-x-1=x-4 ……………3分 解这个方程,得x=3 ……………6分 检验:当x==3时,x-4=-1≠0 ……7分 A F E D C B ∴ x=3是原方程的解 ………………8分 A F E D C B 20.(本题满分8分) 解法1:图中∠CBA=∠E ……1分 证明:∵AD=BE ∴AD+DB=BE+DB即AB=DE …3分 ∵AC∥DF ∴∠A=∠FDE …5分 又∵AC=DFA F E D C B ∴△ABC≌△DEF ……7分 ∴∠CBA=∠E ……8分A F E D C B 解法2:图中∠FCB=∠E ………1分 证明:∵AC=DF,AC∥DF ∴四边形ADFC是平行四边形 ………3分 ∴CF∥AD,CF=AD ………5分 ∵AD=BE ∴CF=BE,CF∥BE ∴四边形BEFC是平行四边形 ………7分 ∴∠FCB=∠E ………8分 21.(本题满分8分) 解:设每年采用空运往来的有x万人次,海运往来的有y万人次,依题意得 …1分 ……5分 解得 ……7分 答:每年采用空运往来的有450万人次,海运往来的有50万人次. ……8分 22.(本题满分8分) 解:(1)15000,10000; …………2分 (2)3.75%,5.25% …………4分 B C A O D 100º 32 cm 图(2) (3)3700,3700; …………6分 (4)36; …………8分 23.(本题满分10分) 解法1:连接AC,BD ∵OA=OB=OC=OB ∴四边形ACBD为矩形 ∵∠DOB=100º, ∴∠ABC=50º ……2分 由已知得AC=32 在Rt△ABC中,sin∠ABC= ∴AB==≈41.8(cm) …6分 tan∠ABC=,∴BC==≈26.9 (cm) ∴AD=BC =26.9 (cm) 答:椅腿AB的长为41.8cm,篷布面的宽AD为26.9cm. ……10分 解法2:作OE⊥AD于E. B C A O D 100º 32 cm 图(2) E ∵OA=OB=OC=OD, ∠AOD=∠BOC ∴△AOD≌△BOC ∵∠DOB=100º, ∴∠OAD=50º ……2分 ∴OE==16 在Rt△AOE中,sin∠OAE= ∴AO= = ≈20.89 ∴AB=2AO ≈41.8(cm) ……6分 tan∠OAE=,AE==≈13.43 ∴AD=2 AE ≈26.9(cm) 答:椅腿AB的长为41.8cm,篷布面的宽AD为26.9cm. ……10分 24.(本题满分10分) 解:(1)B,C ……本小题2分,答对1个得1分,答错不得分 (2)画图正确得2分(图中小三角形与小半圆没有画出,不影响得分); 如: 等 开始 A B C A B C A B C A B C (A,A) (A,B) (A,C) (B,A) (B,B) (B,C) (C,A) (C,B) (C,C) (3)(本小题6分)画树状图或列表 小明 小红 A B C A (A,A) (A,B) (A,C) B (B,A) (B,B) (B,C) C (C,A) (C,B) (C,C) 或 …4分 … 一共有9种结果,每种结果出现的可能性是相同的.而其中能恰好拼成轴对称图形的结果有五种,分别是(A,A) 、(B,B)、(C,C)、(B,C)、(C,B),所以两件文具可以拼成一个轴对称图案的概率是. …………6分 M B E A C N D F G 图(1) H 25.(本题满分13分) 解:(1)∵四边形ABCD和四边形AEFG是正方形 ∴AB=AD,AE=AG,∠BAD=∠EAG=90º ∴∠BAE+∠EAD=∠DAG+∠EAD ∴∠BAE=∠DAG ∴△ BAE≌△DAG …………4分 (2)∠FCN=45º …………5分 理由是:作FH⊥MN于H ∵∠AEF=∠ABE=90º ∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º ∴∠FEH=∠BAE 又∵AE=EF,∠EHF=∠EBA=90º ∴△EFH≌△ABE …………7分 ∴FH=BE,EH=AB=BC,∴CH=BE=FH ∵∠FHC=90º,∴∠FCH=45º …………8分 M B E A C N D F G 图(2) H (3)当点E由B向C运动时,∠FCN的大小总保持不变,…………9分 理由是:作FH⊥MN于H 由已知可得∠EAG=∠BAD=∠AEF=90º 结合(1)(2)得∠FEH=∠BAE=∠DAG 又∵G在射线CD上 ∠GDA=∠EHF=∠EBA=90º ∴△EFH≌△GAD,△EFH∽△ABE ……11分 ∴EH=AD=BC=b,∴CH=BE, ∴== ∴在Rt△FEH中,tan∠FCN=== …………13分 ∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN= y x A O B P M 图(1) C1 C2 C3 H G 26.(本题满分13分) 解:(1)由抛物线C1:得 顶点P的为(-2,-5) ………2分 ∵点B(1,0)在抛物线C1上 ∴ 解得,a= ………4分 (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G ∵点P、M关于点B成中心对称 ∴PM过点B,且PB=MB ∴△PBH≌△MBG ∴MG=PH=5,BG=BH=3 ∴顶点M的坐标为(4,5) ………6分 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到 ∴抛物线C3的表达式为 ………8分 (3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到 ∴顶点N、P关于点Q成中心对称 由(2)得点N的纵坐标为5 y x A O B P N 图(2) C1 C4 Q E F H G K 设点N坐标为(m,5) ………9分 作PH⊥x轴于H,作NG⊥x轴于G 作PK⊥NG于K ∵旋转中心Q在x轴上 ∴EF=AB=2BH=6 ∴FG=3,点F坐标为(m+3,0) H坐标为(2,0),K坐标为(m,-5), 根据勾股定理得 PN2=NK2+PK2=m2+4m+104 PF2=PH2+HF2=m2+10m+50 NF2=52+32=34 ………10分 ①当∠PNF=90º时,PN2+ NF2=PF2,解得m=,∴Q点坐标为(,0) ②当∠PFN=90º时,PF2+ NF2=PN2,解得m=,∴Q点坐标为(,0) ③∵PN>NK=10>NF,∴∠NPF≠90º 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点 的三角形是直角三角形. ………13分查看更多