- 2021-11-10 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
九年级数学上册第二十二章二次函数22-3实际问题与二次函数第2课时二次函数与几何综合运用教案新版 人教版
第2课时 二次函数与几何综合运用 能根据具体几何问题中的数量关系,列出二次函数关系式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型. 重点 应用二次函数解决几何图形中有关的最值问题. 难点 函数特征与几何特征的相互转化以及讨论最值在何处取得. 一、引入新课 上节课我们一起研究用二次函数解决利润等代数问题,这节课我们共同研究二次函数与几何的综合应用. 二、教学过程 问题1:教材第49页探究1. 用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l为多少米时,场地的面积S最大? 分析: 提问1:矩形面积公式是什么? 提问2:如何用l表示另一边? 提问3:面积S的函数关系式是什么? 问题2:如图,用一段长为60 m的篱笆围成一个一边靠墙的矩形菜园,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 分析: 提问1:问题2与问题1有什么不同? 提问2:我们可以设面积为S,如何设自变量? 提问3:面积S的函数关系式是什么? 答案:设垂直于墙的边长为x米,S=x(60-2x)=-2x2+60x. 提问4:如何求解自变量x的取值范围?墙长32 m对此题有什么作用? 答案:0<60-2x≤32,即14≤x<30. 提问5:如何求最值? 答案:x=-=-=15时,Smax=450. 问题3:将问题2中“墙长为32 m”改为“墙长为18 m”,求这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 提问1:问题3与问题2有什么异同? 提问2:可否模仿问题2设未知数、列函数关系式? 提问3:可否试设与墙平行的一边为x米?则如何表示另一边? 2 答案:设矩形面积为S m2,与墙平行的一边为x米,则S=·x=-+30x. 提问4:当x=30时,S取最大值.此结论是否正确? 提问5:如何求自变量的取值范围? 答案:0<x≤18. 提问6:如何求最值? 答案:由于30>18,因此只能利用函数的增减性求其最值.当x=18时,Smax=378. 小结:在实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值. 三、回归教材 阅读教材第51页的探究3,讨论有没有其他“建系”的方法?哪种“建系”更有利于题目的解答? 四、基础练习 1.教材第51页的探究3,教材第57页第7题. 2.阅读教材第52~54页. 五、课堂小结与作业布置 课堂小结 1.利用求二次函数的最值问题可以解决实际几何问题. 2.实际问题的最值求解与函数图象的顶点、端点都有关系,特别要注意最值的取得不一定在函数的顶点处. 作业布置 教材第52页 习题第4~7题,第9题. 2查看更多