人教版9年级下册数学精品示范教案26_1_1 反比例函数的意义

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

人教版9年级下册数学精品示范教案26_1_1 反比例函数的意义

年级 九 年 级 课题 26.1.1 反比例函数的意义 课型 新授 教学 媒体 多 媒 体 教 学 目 标 1.使学生理解并掌握反比例函数的概念。 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。 经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。 培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。 重点 难点 理解反比例函数的概念,能根据已知条件写出函数解析式 理解反比例函数的概念 教学 准备 教师准备 是否需要课 件 学生准备 一、创设情境、导入新课 1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的? 2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 问题提出:电流 I、电阻 R、电压 U 之间满足关系式 U=IR,当 U=220V 时, (1)你能用含有 R 的代数式表示 I 吗? (2)利用写出的关系式完成下表: R/Ω 20 40 60 80 100 I/A 当 R 越来越大时,I 怎样变化?当 R 越来越小呢? (3)变量 I 是 R 的函数吗?为什么? 学生小组合作讨论。 概念:如果两个变量 x,y 之间的关系可以表示成 )0(  kkx ky 为常数, 的形式,那么 y 是 x 的反比例函数,反比例函数的自变量 x 不能为零。 学生探究反比例函数变量的相依关系,领会其概念。 留白: (供教师个性 化设计) 二、联系生活、丰富联想 做一做 1.一个矩形的面积为 20 2cm ,相邻的两条边长分别为 xcm 和 ycm。那么变量 y 是变量 x 的函数吗? 为什么? 学生先独立思考,再进行全班交流。 2.某村有耕地 346.2 公顷,人数数量 n 逐年发生变化,那么该村人均占有耕地面积 m(公顷/人)是 全村人口数 n 的函数吗?为什么? 学生先独立思考,再同桌交流,而后大组发言。 3.y 是 x 的反比例函数,下表给出了 x 与 y 的一些值: x -2 -1 2 1 2 1 1 3 … y 3 2 2 -1 …… (1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表。 学生先独立练习,而后再同桌交流,上讲台演示。 三、举例应用 创新提高: 例 1.(补充)下列等式中,哪些是反比例函数 (1) 3 xy  (2) xy 2 (3)xy=21 (4) 2 5  xy (5) xy 2 3 (6) 31  xy (7)y=x-4 分析:根据反比例函数的定义,关键看上面各式能否改写成 x ky  (k 为常数,k≠0)的形式, 这里(1)、(7)是整式,(4)的分母不是只单独含 x,(6)改写后是 x xy 31 ,分子不是 常数,只有(2)、(3)、(5)能写成定义的形式 例 2.(补充)当 m 取什么值时,函数 23)2( mxmy  是反比例函数? 分析:反比例函数 (k≠0)的另一种表达式是 1 kxy (k≠0),后一种写法中 x 的次数 是-1,因此 m 的取值必须满足两个条件,即 m-2≠0 且 3-m2=-1,特别注意不要遗漏 k≠0 这 一条件,也要防止出现 3-m2=1 的错误。 解得 m=-2 例 3.(补充)已知函数 y=y1+y2,y1 与 x 成正比例,y2 与 x 成反比例,且当 x=1 时,y=4; 当 x=2 时,y=5 求 y 与 x 的函数关系式 当 x=-2 时,求函数 y 的值 授课时间:_____年_____月____日 分析:此题函数 y 是由 y1 和 y2 两个函数组成的,要用待定系数法来解答,先根据题意分别设出 y1、 y2 与 x 的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。这里要注意 y1 与 x 和 y2 与 x 的函数关系中的比例系数不一定相同,故不能都设为 k,要用不同的字母表示。 略解:设 y1=k1x(k1≠0), x ky 2 2  (k2≠0),则 x kxky 2 1  ,代入数值求得 k1=2,k2 =2,则 xxy 22  ,当 x=-2 时,y=-5 四、随堂练习 1.苹果每千克 x 元,花 10 元钱可买 y 千克的苹果,则 y 与 x 之间的函数关系式为 2.若函数 28)3( mxmy  是反比例函数,则 m 的取值是 3.矩形的面积为 4,一条边的长为 x,另一条边的长为 y,则 y 与 x 的函数解析式为 4.已知 y 与 x 成反比例,且当 x=-2 时,y=3,则 y 与 x 之间的函数关系式是 ,当 x=-3 时,y= 5.函数 2 1  xy 中自变量 x 的取值范围是 五、课后练习 已知函数 y=y1+y2,y1 与 x+1 成正比例,y2 与 x 成反比例,且当 x=1 时,y=0;当 x=4 时,y=9,求当 x=-1 时 y 的值 答案:y=4 六、课后反思:
查看更多

相关文章

您可能关注的文档