2020年中考数学专题复习:几何知识点总结

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020年中考数学专题复习:几何知识点总结

九年级几何知识点总结 证明(一) 1、本套教材选用如下命题作为公理: (1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 (2)、两条平行线被第三条直线所截,同位角相等。 (3)、两边及其夹角对应相等的两个三角形全等。 (4)、两角及其夹边对应相等的两个三角形全等。 (5)、三边对应相等的两个三角形全等。 (6)、全等三角形的对应边相等、对应角相等。 此外,等式的有关性质和不等式的有关性质都可以看做公理。 2、平行线的判定定理 公理 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 简单说成:同位角相等,两直线平行。 定理 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 简单说成:同旁内角互补,两直线平行。 定理 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 简单说成:内错角相等,两直线平行。 3、平行线的性质定理 公理 两条平行线被第三条直线所截,同位角相等。 简单说成:两直线平行,同位角相等。 定理 两条平行线被第三条直线所截,内错角相等。 简单说成:两直线平行,内错角相等。 定理 两条平行线被第三条直线所截,同旁内角互补。 简单说成:两直线平行,同旁内角互补。 如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 4、三角形内角和定理 三角形三个内角的和等于 180 。 5、三角形内角和定理的推论 三角形的一个外角等于和它不相邻的两个内角的和。 三角形的一个外角大于任何一个和它不相邻的内角。 证明(二) 一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 (2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。 (3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。 (4)全等三角形的对应边相等、对应角相等。 推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或 “AAS”)。 二、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。 等腰三角形的其他性质: ①等腰直角三角形的两个底角相等且等于 45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 ③等腰三角形的三边关系:设腰长为 a,底边长为 b,则 2 b 知识点总结 圆与三角形、四边形一样都是研究相关图形中的线、角、周长、面积等知识。包括性 质定理与判定定理及公式。 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条 直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都 相等的一条直线 点与圆的位置关系: 点在圆内 dr 点 A 在圆外 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r 外切(图 2) 有一个交点 d=R+r 相交(图 3) 有两个交点 R-r
查看更多