2019九年级数学上册 第二十五章 25概率

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019九年级数学上册 第二十五章 25概率

第二十五章 25.1.2概率 知识点1:概率的意义和表示方法 ‎ 一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).‎ 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率为P(A)= .‎ 若事件A发生的概率为P(A),则有0≤P(A)≤1.‎ 特别地,当事件A为必然事件时,P(A)=1;当事件A为不可能事件时,P(A)=0;当事件A为随机事件时,0,所以本题选B.‎ 考点2:概率与函数的综合运用 ‎【例2】  已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.‎ ‎(1)求从箱中随机取出一个白球的概率是多少?‎ ‎(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是,求y与x的函数解析式.‎ 解:(1)取出一个白球的概率P==.‎ ‎(2)∵ 取出一个白球的概率P=,‎ ‎∴ =.‎ ‎∴ 5+x+y=6+3x,即y=2x+1.‎ 4‎ ‎∴ y与x的函数解析式是y=2x+1.‎ 点拨:因为“只有颜色不同的球”,所以从中任意摸出一个球的机会是等可能的,纸箱中共装有5个球,其中2个白球,3个红球.‎ 根据公式:P(随机事件)=,易使问题获解.‎ 考点3:概率知识的实际应用 ‎【例3】  某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.‎ 厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.‎ ‎(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;‎ ‎(2)如图(1),是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.‎ ‎   ‎ 解:(1)该抽奖方案符合厂家的设奖要求.‎ ‎(2)本题答案不唯一,下列解法供参考.‎ 如图(2),将转盘中圆心角为36°的扇形区域涂上黄色,其余的区域涂上白色.顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.‎ 点拨:(1)是否符合要求是指该数学老师设计的方案能否体现“10%得大奖,90%得小奖”的厂家意图,因此可将数学老师的方案用排列法或画树状图的方法得到概率.如用黄1、黄2、白1、白2、白3表示这5个球.从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,白2)、(白1,白3)、(白2,白3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到2个球都是黄球(记为事件A)的结果有1种,即(黄1,黄2),所以P(A)=‎ 4‎ ‎.即顾客获得大奖的概率为10%,获得小奖的概率为90%.数学老师设计的方案符合要求;(2)本题求解方法不唯一,画图时只需将该转盘(圆)平均分为10份,某种颜色占1份,另一种颜色占9份.顾客购买该型号电视机时获得一次转动转盘的机会,指向1份颜色获得大奖,指向9份颜色获得小奖即可.‎ ‎ ‎ 4‎
查看更多

相关文章

您可能关注的文档