【精品】人教版 九年级下册数学 第二十六章 反比例函数 小结与复习

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【精品】人教版 九年级下册数学 第二十六章 反比例函数 小结与复习

小结与复习第二十六章反比例函数要点梳理考点讲练课堂小结课后作业九年级数学下(RJ)教学课件 1.反比例函数的概念要点梳理定义:形如________(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.三种表达式方法:或xy=k或y=kx-1(k≠0).【注意】(1)k≠0;(2)自变量x≠0;(3)函数y≠0. 2.反比例函数的图象和性质(1)反比例函数的图象:反比例函数(k≠0)的图象是,它既是轴对称图形又是中心对称图形.反比例函数的两条对称轴为直线和;对称中心是:.双曲线原点y=xy=-x (2)反比例函数的性质图象所在象限性质(k≠0)k>0第______象限(x,y同号)在每个象限内,y随x的增大而____k<0第______象限(x,y异号)在每个象限内,y随x的增大而____xyoxyo一、三二、四减小增大 (3)反比例函数比例系数k的几何意义k的几何意义:反比例函数图象上的点(x,y)具有两坐标之积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为.规律:过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为.|k| 3.反比例函数的应用◑利用待定系数法确定反比例函数:①根据两变量之间的反比例关系,设;②代入图象上一个点的坐标,即x、y的一组对应值,求出k的值;③写出解析式. ◑反比例函数与一次函数的图象的交点求直线y=k1x+b(k1≠0)和双曲线(k2≠0)的交点坐标就是解这两个函数解析式组成的方程组.◑利用反比例函数相关知识解决实际问题过程:分析实际情境→建立函数模型→明确数学问题注意:实际问题中的两个变量往往都只能取非负值. 考点讲练考点一反比例函数的概念例1下列函数中哪些是正比例函数?哪些是反比例函数?①y=3x-1②y=2x2⑤y=3x③④⑥⑦⑧ 1.已知点P(1,-3)在反比例函数的图象上,则k的值是()A.3        B.-3C.D.B2.若是反比例函数,则a的值为()A.1B.-1C.±1D.任意实数A系数不为0,x的次数为-1针对训练 例2已知点A(1,y1),B(2,y2),C(-3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1解析:方法①分别把各点代入反比例函数求出y1,y2,y3的值,再比较出其大小即可.方法②:根据反比例函数的图象和性质比较.考点二反比例函数的图象和性质D 方法总结:比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.y1>0>y2针对训练已知点A(x1,y1),B(x2,y2)(x1<0<x2)都在反比例函数(k<0)的图象上,则y1与y2的大小关系(从大到小)为. 例3如图,两个反比例函数和在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为.1考点三与反比例函数k有关的问题S△POB=S△POA-S△BOA 【变式题】如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数(x>0)和(x>0)的图象交于P,Q两点,若S△POQ=14,则k的值为.-20410 考点四反比例函数的应用例4如图,已知A(-4,),B(-1,2)是一次函数y=kx+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数的值大于反比例函数的值;OBAxyCD解:当-4<x<-1时,一次函数的值大于反比例函数的值. (2)求一次函数解析式及m的值;解:把A(-4,),B(-1,2)代入y=kx+b中,得-4k+b=,-k+b=2,解得k=,b=,所以一次函数的解析式为y=x+.把B(-1,2)代入中,得m=-1×2=-2. (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.OBAxyCDP∵△PCA面积和△PDB面积相等,∴AC·[t-(-4)]=BD·[2-(t+)],解得:t=.∴点P的坐标为(,).解:设点P的坐标为(t,t+),P点到直线AC的距离为t-(-4),P点到直线BD的距离为2-(t+). 方法总结:此类一次函数,反比例函数,二元一次方程组,三角形面积等知识的综合运用,其关键是理清解题思路.在直角坐标系中,求三角形或四边形面积时,是要选取合适的底边和高,正确利用坐标算出线段长度. 针对训练如图,设反比例函数的解析式为(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点P的纵坐标为2,求k的值;Oyx解:由题意知点P在正比例函数y=2x上,把P的纵坐标2代入该解析式,得P(1,2),把P(1,2)代入,得到P2 (2)若该反比例函数与过点M(-2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式;解:把M(-2,0)代入y=kx+b,得b=2k,∴y=kx+2k,OAyBxMlN解得x=-3或1.y=kx+2k,∴∴B(-3,-k),A(1,3k). ∵△ABO的面积为∴2·3k·+2·k·=解得∴直线l的解析式为y=x+.OyxMlNA(1,3k)B(-3,-k) (3)在第(2)题的条件下,当x取何值时,一次函数的值小于反比例函数的值?OyxMlNA(1,3k)B(-3,-k)解:当x<-3或0<x<1时,一次函数的值小于反比例函数的值. 例5病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(单位:毫克)与时间x(单位:小时)成正比例;2小时后y与x成反比例(如图).根据以上信息解答下列问题:(1)求当0≤x≤2时,y与x的函数解析式;解:当0≤x≤2时,y与x成正比例函数关系.设y=kx,由于点(2,4)在线段上,所以4=2k,k=2,即y=2x.Oy/毫克x/小时24 (2)求当x>2时,y与x的函数解析式;解:当x>2时,y与x成反比例函数关系,设解得k=8.由于点(2,4)在反比例函数的图象上,所以即Oy/毫克x/小时24 (3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?解:当0≤x≤2时,含药量不低于2毫克,即2x≥2,解得x≥1,∴1≤x≤2;当x>2时,含药量不低于2毫克,即≥2,解得x≤4.∴2
查看更多