- 2021-11-06 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
华师版九年级上册数学同步课件-第21章- 复习课
第21章 二次根式 复习课 加 、减、乘、除 二 次 根 式 最简二次根式 同类二次根式 有理化因式 b a b a ( 0 0)a ,b > 0,0 babaab 0 2 aaa aa2 0a a ;0aa 1.二次根式的概念 一般地,形如____(a≥0)的式子叫做二次根式. 对于二次根式的理解: ①带有根号;②被开方数是非负数,即a≥0. [易错点] 二次根式中,被开方数一定是非负数,否则就没 有意义. 2.二次根式的性质 2 2 0 0 ; 0 a a a a a a a a a . , < 3.最简二次根式 满足下列两个条件的二次根式,叫做最简二次根式. (1)被开方数不含_______; (2)被开方数中不含能___________的因数或因式.开得尽方 分母 4.二次根式的运算 =______(a≥0,b≥0); =____(a≥0,b>0). 二次根式加减时,可以先将二次根式化成_____________, 再将________________的二次根式进行合并. a b a b 最简二次根式 被开方数相同 1. 当x _____ 时,二次根式 有意义.x3 3.求下列二次根式中x的取值范围. 15 3 x x 解得 - 5≤x<3. 解:由题意,得 5 0 3 0 x , x > , 说明:二次根式被开方数不小于 0,所以求二次根式中字母的取 值范围常转化为不等式(组). ≤3 a=52. 有意义的条件是 .5 5 a a 确定二次根式中字母的取值范围题型1 2.已知 + =0,求 x-y 的值.yx24x 3x 解:由题意,得 x-4=0 且 2x+y=0. 解得 x=4,y= -8. 故x-y=4-(-8)= 4+ 8 =12. D 二次根式的非负性 1.已知x、y为实数,且 +3(y-4)2 =0,则x-y的值为( ) A.3 B.-3 C.1 D.-1 题型2 二次根式的性质与化简 如图所示是表示实数a、b的点在数轴上的位置, 化简: .222 baba 分析 解决此问题的关键是确定a、b及a-b的正负. 解:根据实数a、b在数轴上的位置可知,b>0>a,故a- b<0. 2 22 a b a b a b b a 2 b. 题型3 A 二次根式的计算题型4 2.计算: 11 6 2 15 3 6 ; 2 2 2 2 5 2 5 2 2 . 16 2 15 3 6 2 1= 18-2 45 6 2 =3 2-6 5 3 2 =-6 5. 2 2 5 2 5 2 2 =4-5 4-4 2+2 =5-4 2. 解: 解: 1.下列二次根式中,无论x取什么值都有意义的是( ) 52 xA. B. C. D.5 x x 12 x D 2.下列各式中,是最简二次根式的是( )B A 8. B 70. C 99. 1D . x 2 2( 4) ( 1)x x 3 15 3a 100x 3 5 2 2a b 2 1a 144 2 2 1a a a<0 -(a2+1)<0 (a-1)2≥0 5.计算: 2 2 3 7 2 3 7 ; 13 3 12 2 48 2 3. 3 1 3 12-2 48+ 8 =6 3-8 3+2 2 =-2 3+2 2 2 2 3 7 2 3 7 2 2 = 2 3 7 =12-7 =5. 13 3 12 2 48 2 3 3 26 3 3 4 3 2 3 3 28 3 2 3 3 14 . 3 解: 若a为底,b为腰,此时底边上的高为 ∴三角形的面积为 (2)若满足上式的a、b为等腰三角形的两边,求这个等腰三角 形的面积. 设a、b为实数,且 (2)若a为腰,b为底,此时底边上的高为 1 1 4 72 . 2 2 2 ∴三角形的面积为 22 1 1. ( ) a b(1)求 、 的值; 6. 2 2 0.a b 1 2 1 1. 2 2 2 2 7 142 . 2 2 2 2 0,1 2 2. 2 0. a a b b 由题意,得 ,解:查看更多