八年级下册数学同步练习第六章复习1 北师大版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

八年级下册数学同步练习第六章复习1 北师大版

第六章复习 一.选择题 ‎1.下列说法错误的是(  )‎ A.对角线互相平分的四边形是平行四边形 B.两组对边分别相等的四边形是平行四边形 C.一组对边平行且相等的四边形是平行四边形 D.一组对边相等,另一组对边平行的四边形是平行四边形 ‎2.如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是(  )‎ A.5 B.7 C.8 D.10‎ ‎3.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是(  )‎ A.①,② B.①,④ C.③,④ D.②,③‎ ‎4.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为(  )‎ A.150° B.130° C.120° D.100°‎ ‎5.若一个多边形的内角和与它的外角和相等,则这个多边形是(  )‎ A.三角形 B.四边形 C.五边形 D.六边形 ‎6.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是(  )‎ A.7 B.10 C.35 D.70‎ ‎7.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  )‎ A.3cm B.4cm C.5cm D.8cm ‎8.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为(  )‎ A.13 B.17 C.20 D.26‎ ‎9.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为(  )‎ A.6 B.12 C.20 D.24‎ ‎10.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是(  )‎ A.EF=CF B.EF=DE C.CF<BD D.EF>DE ‎11.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(  )[来源:学,科,网]‎ A.7 B.8 C.9 D.10‎ ‎12.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为(  )‎ A.4 B.8 C.2 D.4‎ ‎ ‎ 二.填空题 ‎13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为   .‎ ‎14.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于   .‎ ‎15.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为   .‎ ‎16.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=   .‎ ‎17.如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.‎ ‎(1)若AB=DC,则四边形ABCD的面积S=   ;‎ ‎(2)若AB>DC,则此时四边形ABCD的面积S′   S(用“>”或“=”或“<”填空).‎ ‎ [来源:Z。xx。k.Com]‎ 三.解答题 ‎18.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.‎ ‎(1)求证:△ABF≌△CDE;[来源:学+科+网Z+X+X+K]‎ ‎(2)如图,若∠1=65°,求∠B的大小.‎ ‎19.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.‎ ‎20.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.‎ ‎(1)求证:BE=CD;‎ ‎(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.‎ ‎21.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.‎ ‎[来源:Zxxk.Com]‎ ‎22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.‎ ‎(1)试说明AC=EF;‎ ‎(2)求证:四边形ADFE是平行四边形.‎ ‎[来源:学+科+网Z+X+X+K]‎
查看更多

相关文章

您可能关注的文档