人教版 八年级下册寒假同步课程(培优版)12一次函数的应用

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

人教版 八年级下册寒假同步课程(培优版)12一次函数的应用

一次函数的应用内容基本要求略高要求较高要求一次函数理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题一、与一次函数有关的图象信息题【例1】小红的爷爷饭后出去散步,从家中走分钟到一个离家米的街心花园,与朋友聊天分钟后,用分钟返回家里.图中表示小红爷爷离家的时间与外出的距离之间的关系是()ABCD【例2】小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟9 【例1】某校八年级同学到距学校千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,、分别表示步行和骑车的同学前往目的地所走的路程(千米)与所用时间(分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发分钟B.步行的速度是千米/时C.骑车同学从出发到追上步行同学用了分钟D.骑车的同学和步行的同学同时达到目的地【例2】某污水处理厂的一个净化水池设有个进水口和个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天点到点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴点到点只进水不出水;⑵点到点不进水只出水,⑶点到点不进水也不出水.其中正确的是()A.⑴B.⑶C.⑴⑶D.⑴⑵⑶9 【例1】如果等腰三角形的周长为16,那么它的底边长与腰长之间的函数图像为()【例2】如图,在矩形中,AB=2,,动点P从点B出发,沿路线作匀速运动,那么的面积S与点P运动的路程之间的函数图象大致是()DCPBAO3113SxA.O113SxO3Sx3O113SxB.C.D.21.行程问题【例3】汽车在行驶时,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.现甲、乙两车在一个弯道上相向而行,在相距16米的地方发现情况不对,同时刹车,根据有关资料,甲、乙两车刹车距离(米)与车速(千米/时)之间与如图所示.若甲、乙两车的速度都是60千米/时,两车是否相撞?说说你的理由.9 【例1】右图是某汽车行驶的路程与时间的函数关系图.观察图中所提供的信息,解答下列问题:⑴汽车在前分钟内的平均速度是;⑵汽车在中途停了多长时间?;⑶当时,求与的函数关系式.【例2】某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米;4小时后,沙尘暴经过开阔荒漠地带,风速平均每小时增加4千米;此后风速保持不变;当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米,最终停止(如图所示).⑴在沙尘暴从发生到结束的全过程中,0时至10时风速是否在不断变化?什么时间内风速保持不变?⑵在4时和12时的风速各是多少?图中的A、B分别表示什么?⑶沙尘暴是经过几个小时后停止的?9 【例1】2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.⑴哪个队先到达终点?乙队何时追上甲队?⑵在比赛过程中,甲、乙两队何时相距最远?【例2】小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(时)之间关系的函数图象.⑴根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?⑵小明出发两个半小时离家多远?⑶小明出发多长时间距家12千米?9 1.方案决策问题【例1】A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元. ⑴设B市运往C村机器台,求总运费关于的函数关系式;⑵若要求总运费不超过9000元,共有几种调运方案?⑶求出总运费最低的调运方案,最低运费是多少元?【例2】某电信局收取网费如下:163网网费为每小时3元,169网网费为每小时2元,但要收取15元月租费.设网费为(元),上网时间是(小时),分别写出和的函数关系式,某网民每月上网19小时,他应选哪种上网方式比较划算?9 【例1】某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.⑴设学生数为,甲旅行社收费为,乙旅行社收费为,分别计算两家旅行社的收费(建立表达式);⑵当学生数是多少时,两家旅行社的收费一样;⑶就学生数讨论哪家旅行社更优惠.【例2】北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.求:⑴若总运费为8400元,上海运往汉口应是多少台?⑵若要求总运费不超过8200元,共有几种调运方案?⑶求出总运费最低的调运方案,最低总运费是多少元?【例3】某种储蓄的月利率是,今存入本金100元,求本息和(本金与利息的和)(元)与所存月数之间的函数关系式,并计算5个月后的本息和.【例4】某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元.由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2.表1表2商品每1万元营业额商品每1万元营业额9 所需人数所得利润百货类5百货类0.3万元服装类4服装类0.5万元家电类2家电类0.2万元商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为(万元)、(万元)、(万元)(都是整数).⑴请用含的代数式分别表示和;⑵若商场预计每日的总利润为(万元),且满足,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?课后作业1.东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法.甲:买一枝毛笔就赠送一本书法练习本.乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10枝,书法练习本本.⑴写出每种优惠办法实际的金额(元),(元)与(本)之间的函数关系式;⑵比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;⑶如果商场允许可以任意选择一种优惠办法购买,也可以同时选两种优惠办法购买,请你就购买这种毛笔10枝和书法练习本60本设计一种最省钱的购买方案.2.9 甲乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的方案:甲超市累计购买商品超出300元后,超出部分按原价的8折优惠,在已超市累计购买商品超出200元后,超出部分按原价8.5折优惠.设顾客预计累计购物元.(>300)试比较顾客到哪家超市购物更实惠?说明理由3.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而库的容量为70吨,库的容量为110吨.从甲、乙两库到两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)⑴若甲库运往库粮食吨,请写出将粮食运往两库的总运费(元)与(吨)的函数关系式.⑵当甲、乙两库各运往两库多少吨粮食时,总运费最省,最省的总运费是多少?9
查看更多

相关文章

您可能关注的文档