2019秋八年级数学下册第二十二章四边形22-4矩形第1课时矩形的性质教学课件(新版)冀教版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019秋八年级数学下册第二十二章四边形22-4矩形第1课时矩形的性质教学课件(新版)冀教版

导入新课讲授新课当堂练习课堂小结22.4矩形第二十二章四边形第1课时矩形的性质 学习目标1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点)2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点)3.掌握直角三角形斜边中线的性质,并会简单的运用.(重点) 观察下面图形,长方形在生活中无处不在.导入新课情景引入 思考长方形跟我们前面学习的平行四边形有什么关系?你还能举出其他的例子吗? 讲授新课矩形的性质一活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.矩形 平行四边形矩形有一个角是直角矩形是特殊的平行四边形.定义:有一个角是直角的平行四边形叫做矩形.归纳总结平行四边形不一定是矩形. 思考:矩形是不是中心对称图形?如果是,那么对称中心是什么?矩形是中心对称图形,对角线的交点是它的对称中心.由于矩形是平行四边形,因此O 做一做请同学们拿出准备好的矩形纸片,折一折,观察并思考.矩形是不是轴对称图形?如果是,那么对称轴有几条?矩形是轴对称图形,过每一组对边中点的直线都是矩形的对称轴. 思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?可以从边,角,对角线等方面来考虑. 活动2:准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果. ABCDOABADACBD∠BAD∠ADC∠AOD∠AOB橡皮擦课本桌子物体测量(实物)(形象图)(2)根据测量的结果,你有什么猜想?猜想1矩形的四个内角都是直角.猜想2矩形的两条对角线相等.你能证明吗? 证明:由定义,矩形必有一个角是直角,设∠A=90°∵AB∥DC,AD∥BC,∴∠B=∠C=∠D=90°.(两直线平行,同旁内角互补)即矩形ABCD的四个内角都是直角.已知,矩形ABCD.求证:∠A=∠B=∠C=∠D=90°.ABCD证一证 证明:∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB.∴AC=DB.ABCDO如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相较于点O.求证:AC=DB. 矩形除了具有平行四边形所有性质,还具有:矩形的四个内角都是直角.矩形的两条对角线相等.归纳总结几何语言描述:在矩形ABCD中,对角线AC与DB相较于点O.∠ABC=∠BCD=∠CDA=∠DAB=90°,AC=DB.ABCDO 例1如图,在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4,求矩形对角线的长.解:∵四边形ABCD是矩形.∴AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OB.又∵∠AOB=60°,∴△OAB是等边三角形,∴OA=AB=4,∴AC=BD=2OA=8.ABCDO典例精析矩形的对角线相等且互相平分 例2如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.ABCDEF证明:连接DE.∵AD=AE,∴∠AED=∠ADE.∵四边形ABCD是矩形,∴AD∥BC,∠C=90°.∴∠ADE=∠DEC,∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.又∵DE=DE,∴△DFE≌△DCE,∴DF=DC. 例3如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知∠1=∠2,∴∠1=∠3,∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2,解得x=5,即DE=5.∴S△BED=DE·AB=×5×4=10.矩形的折叠问题常与勾股定理结合考查 练一练1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是(  )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OBABCDOC 2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________. 3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.解:∵四边形ABCD是矩形,∴∠DAB=90°,AO=AC,BO=BD,AC=BD,∴∠BAE+∠DAE=90°,AO=BO.又∵∠DAE:∠BAE=3:1,∴∠BAE=22.5°,∠DAE=67.5°.∵AE⊥BD,∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,∴∠OAB=∠ABE=67.5°∴∠EAO=67.5°-22.5°=45°. 当堂练习1.矩形具有而一般平行四边形不具有的性质是()A.对角线相等B.对边相等C.对角相等D.对角线互相平分2.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是()A.20°B.40°C.80°D.10°AC 3.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=______cm.2.5 4.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE,(2)若∠DBC=30°,BO=4,求四边形ABED的面积.ABCDOE(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE. (2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8.∵∠DBC=30°,∴CD=BD=×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=8.在Rt△BCD中,BC=∴四边形ABED的面积=×(4+8)×=.ABCDOE 5.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.解:连接OP.∵四边形ABCD是矩形,∴∠DAB=90°,OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC=S矩形ABCD=×6×8=12.在Rt△BAD中,由勾股定理得BD=10,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴AO·PE+DO·PF=12,即5PE+5PF=24,∴PE+PF=.能力提升: 课堂小结矩形的相关概念及性质四个内角都是直角,两条对角线互相平分且相等轴对称图形有两条对称轴有一个角是直角的平行四边形叫做矩形中心对称图形,对角线的交点是它的对称中心
查看更多

相关文章

您可能关注的文档