- 2021-10-25 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
不等式的性质教案
11.3不等式的性质 目标要求: 1.掌握不等式的两条基本性质,并能熟练的应用不等式的性质进行不等式的变形; 2.理解不等式的基本性质与等式的基本性质之间的区别. 过程性目标 在积极参与探索、发现不等式基本性质的过程中,体会不等式的两条基本性质的作用和意义,培养学生探索数学问题的能力. 情感态度目标 1.通过学生的自主讨论培养学生的观察力和归纳的能力; 2.通过学生的讨论使学生进一步体会集体的作用,培养其集体合作的精神. 重点和难点 重点:掌握不等式的两条基本性质,尤其是不等式的基本性质2; 难点:正确应用不等式的两条基本性质进行不等式的变形. 一、 创设情境 问:在解一元一次方程时,我们主要是对方程进行变形,那么方程变形主要有哪些? 答:去分母、移项、系数化为1. 问:这些解法具体步骤的主要依据是等式的两条基本性质. 等式基本性质1:在等式的两边都加上(或减去)同一个数或同一个整式,所得的结果仍是等式; 等式基本性质2:等式的两边都乘以或除以同一个数不等于0的数,所得的结果仍是等式 探索1: (1)请同学们观察:课本P.12电梯里两人身高分别为:a米、b米,且a>b,都升高6米后的高度后的不等式关系:a+6>b+6;同理:a-3 b-3(填写“<”、“>”号 (2)实物演示:一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然有a>b),如果在两边盘内再分别加上等量的砝码c,那么盘子会出现什么情况? 可让学生进行操作,并得出结论:盘子仍然像原来那样倾斜(即a+c>b+c). a>b a+c>b+c. 归纳1: 教师在学生得出结论的前提下总结: 4 不等式的性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 用数学式了表示: 如果a>b, 那么a+c>b+c,a-c>b-c. 探索2: 问题: 如果不等式的两边都乘以(或除以)同一个不为零的数, 不等号的方向是否也不变呢? 将不等式7>4两边都乘以同一个数,比较所得数的大小,用“>”,“<”或“=”填空: 7×3 ______4×3, 7×2 ______4×2 , 7×1______ 4×1, …… 7×(-1)______4×(-1), 7×(-2)______4×(-2), 7×(-3)______4×(-3), …… 从中你能发现什么?在学生所得出的结论的基础上,引导学生总结概括出不等式的另外一条性质. 不等式的性质2 不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 用数学式了表示: 如果a>b,并且c>0,那么ac>bc.; 如果a>b,并且c<0,那么ac<bc. 思考:不等式的两边都乘0,结果又怎样? 如:7 4 而 7×0______ 4×0. 不等式的性质与等式的性质比较如下表: 等式的性质 不等式的性质 1. 如果a=b,那么 a+c=b+c, a―c=b―c 1. 如果a>b,那么 a+c>b+c, a―c>b―c 2. 如果a=b,且c≠0, 那么 ac=bc, = 2. 如果a>b,且c>0, 那么ac>bc, >; 如果a>b,且c<0, 那么ac查看更多
相关文章
- 当前文档收益归属上传用户