- 2021-10-25 发布 |
- 37.5 KB |
- 26页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
7上导学案新人教版数学《图形认识初步》
第四章 图形认识初步 课题 4.1.1认识几何图形(1) 【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。 【导学指导】 一、知识链接 同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。 二、自主探究 1.几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (1)纸盒 (1)长方体 (2)长方形 (3)正方形 (4)线段 点 (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么? 我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。 2.立体图形 思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似? 长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。 想一想 第 26 页 共 26 页 生活中还有哪些物体的形状类似于这些立体图形呢? 思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。 3.平面图形 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。 思考:课本118页图4.1-5的图中包含哪些简单的平面图形? 请再举出一些平面图形的例子。 长方形、圆、正方形、三角形、……。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 【课堂练习】: 课本119页练习 【要点归纳】: 现实物体 几何图形 平面图形 立体图形 看外形 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 【拓展训练】 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③;B. ③④⑤;C. ① ③⑤;D. ③④⑤⑥ 【总结反思】: 第 26 页 共 26 页 课题4.1.1几何图形(2) 【学习目标】:1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看; 2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形; 【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形 【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形 【导学指导】 一、知识链接 多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。 横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。 从数学的角度来理解是什么意思呢? 二、自主探究 1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物) 2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物) 这样,我们将立体图形转化成了平面图形 3.探究活动1:从正面、左面、上面观察得到的平面图形你能画出来吗? 第 26 页 共 26 页 小组合作学习,动手画一画,并进行展示 探究:分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。 【课堂练习】: 课本120页练习1 【要点归纳】:1.本节课我们主要学习了什么? 2. 本节课我们有哪些收获? 【拓展训练】 1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( ) A. B. C. D. 2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。 1 2 1 2 【总结反思】: 第 26 页 共 26 页 课题4.1.1几何图形(3) 【学习目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。 2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。 【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。 【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形 【导学指导】 一、知识链接 我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。这样的平面图形叫做相应立体图形的展开图。 你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。 二、自主探究 (一)、立体图形的展开 1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗? 圆柱 圆锥 三棱柱 长方体 思考:请你指出上面展开图各部分与几何体的哪一部分相对应? 2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来, 第 26 页 共 26 页 以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。 (二)、立体图形的折叠 探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形? 凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。 做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么? 【课堂练习】: 课本121页练习2 【要点归纳】:1.我知道了什么? 2.我学会了什么? 3.我发现了什么? 【拓展训练】 1.下列图形中,不是正方体的表面展开图的是( ) A. B. C. D. 建 设 和 谐 沾益 益 2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( ) A.和 B.谐 C.沾 D.益 【总结反思】: 第 26 页 共 26 页 课题 4.1.2点、线、面、体 【学习目标】:(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面; (2)了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、 面、体经过运动变化形成的简单的几何图形; 【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系。 【学习难点】:探索点、线、面、体运动变化后形成的图形。 【导学指导】 一、温故知新 1.出示一个长方体模型,请同学们认真观察。 2.回答问题:这个长方体有几个面?面与面相交成了几条线?线与线相交成几个 点? 二、自主探究 1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。 2.几何体的概念 (1)长方体是一个几何体,我们还学过哪些几何体? _______________________________________________________________________; (2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些? 这些面有什么区别? 3.面的分类 通过对上面问题的解决,得出面的分类:____面和___面。 面与面相交成线,线有___线和____线;线与线相交成_____; 4. 点、线、面、体 教师指导学生看课本第121~122页内容,观察图片能发现什么结论? 点、线、面、体的关系:点动成_____,线动成___________,面动成________。 请你再举出生活中的一些实例: 5.点、线、面、体与几何图形关系. 第 26 页 共 26 页 指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系 几何图形都是由_______________________组成的,________是构成图形的基本元素。 【课堂练习】 课本第122页练习1、2; 【要点归纳】: 1.本节课我们主要学习了什么? 2. 本节课我们有哪些收获? 【拓展训练】: 1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理; 2.体是由_______围成的,面和面相交形成_______,线和线相交形成______; 3.点动成________,线动成______,面动成_______; 4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是( ) A B C D 【总结反思】: 第 26 页 共 26 页 课题 4.2直线、射线、线段(1) 【学习目标】: 1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质; 2.会用字母表示直线、射线、线段,会根据语言描述画出图形; 【重点难点】: 理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形; 【导学指导】 一、知识链接 1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段? 直线 射线 线段 2.填写下列表格: 端点个数 延伸方向 能否度量 线段 射线 直线 二、自主探究 1、直线的性质 (1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。 答: (2)经过一个已知点的直线,可以画多少条直线?请画图说明。 答: O · (3)经过两个已知点画直线,可以画多少条直线?请画图试试。 · · 答: A B 猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论? 直线的基本性质: 经过两点有 条直线,并且 条直线; 简述为: 举例说明直线的性质在日常生活中的应用: (1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为 (2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据 (3)你还能从生活中举出应用直线的基本性质的例子吗?试试看: 第 26 页 共 26 页 2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。 B BB A 直线AB · · a 直线a 平面上一个点与一条直线的位置有什么关系? ①点在直线上;②点在直线外。 O b a 点B在直线外 · B BB · 点A在直线上 A 当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 3、射线和线段的表示方法: 如图。显然,射线和线段都是直线的一部分。 · a · B BB A O A m · ② ① 图①中的线段记作线段AB或线段a;图②中的射线记作射线OA或射线m。 注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。 思考:直线、射线和线段有什么联系和区别? 【课堂练习】 1.下列给线段取名正确的是 ( ) A.线段M B.线段m C.线段Mm D.线段mn 2.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是 ( ) A B C A.射线BA B.射线AC C.射线BC D.射线CB 3.下列语句中正确的个数有 ( ) ①直线MN与直线NM是同一条直线 ②射线AB与射线BA是同一条射线 ③线段PQ与线段QP是同一条线段 ④直线上一点把这条直线分成的两部分都是射线. A.1个 B.2个 C.3个 D.4个 4.课本129页练习 【要点归纳】: 通过本节课的学习你有什么收获? 【拓展训练】: 1.如图,线段AB上有两点C、D,则共有 条线段。 A C D B 2.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票? 第 26 页 共 26 页 【总结反思】: 课题 4.2直线、射线、线段(2) 【学习目标】:1、会用尺规画一条线段等于已知线段; 2、会比较两条线段的长短; 3、理解线段中点的概念,了解“两点之间,线段最短”的性质。 【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点; 【学习难点】:画一条线段等于已知线段是难点。 【导学指导】 一、温故知新 1、过A、B、C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为 的说法是对的。 二、自主学习 问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长? a 上面的实际问题可以转化为下面的数学问题: 已知线段a,画一条线段等于已知线段。 1.作一条线段等于已知线段 现在我们来解决这个问题。 作法: (1)作射线AM (2)在AM上截取AB= a。 则线段AB为所求。 M B · · A a b 应用:已知线段a、b,求作线段AB=a+b。 解:(1)作射线AM; (2)在AM上顺次截取AC=a,CB= b。 则AB= a+b为所求。 C M B · · A 做一做:作线段AB=a-b。 2、比较两条线段的长短 两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢? 我们先来回答下面的问题。 怎样比较两个同学的身高? 一是用尺子测量;二是站在一起比(脚在同一高度)。 如果把两个同学看成两条线段,那么比较两条线段就有两种方法。 (1)度量法:用刻度尺分别量出两条线段的长度从而进行比较。 第 26 页 共 26 页 ( 2)把一条线段移到另一条线段上,使一端对齐,从而进行比较,我们称为叠合法。(如图) A(C) B (D) A(C) (D) B A(C) B(D) AB<CD AB>CD AB=CD 3、线段的中点及等分点 如图(1),点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点; 记作AM=MB或AM=MB=1/2AB或2AM=2MB=AB。 A B M A B M N (1) (2) () 如图(2),点M、N把线段AB分成相等的三段AM、MN、NB,点M、N叫做线段AB的三等分点。类似地,还有四等分点,等等。 4、线段的性质 请同学们思考课本131页的思考? 结论: 两点所连的线中, 简单地说成:___________________________________ 你能举出这条性质在生活中的一些应用吗? 两点间的距离的定义:___________________________________ 注意:距离是用“数”来度量的,它是线段的长度,而不是线段本身。 【课堂练习】 1、课本131页练习1、2 2、在直线上顺次取A、B、C三点,使 AB=4㎝,BC=3㎝,点O是线段AC的中点,则线段OB的长是〔 〕 A、2㎝ B、1.5㎝ C、0.5㎝ D、3.5㎝ 3、已知线段AB=5㎝,C是直线AB上一点,若BC=2㎝,则线段AC的长为 【要点归纳】: 1、画一条线段等于一条已知线段。 2、怎样比较两条线段的长短? 3、线段的性质是什么? 4、什么是两点间的距离? 【拓展训练】: 1、把弯曲的河道改直后,缩短了河道的长度,这是因为 ; 2、已知,如图,AB=16㎝,C是BC的中点,且AC=10㎝,D是AC的中点,E是BC的中点,求线段DE的长。 A B C D E · · · 【总结反思】: 第 26 页 共 26 页 课题 4.3.1角 【学习目标】:1、在现实情景中,理解角的概念,掌握角的表示方法; 2、认识角的度量单位:度、分、秒,学会进行简单的换算和角度的计算。 【重点难点】:角的表示和角度的计算是重点;角的适当表示是难点。 【导学指导】 一、知识链接 观察课本136页图4.3.1;思考问题: 如图,时钟的时针与分针,棱锥相交的两条棱,直尺相交的两条边,给我们什么平面图形的形象? 二、自主学习 O A 顶点 边 边 B a 1 1.角的定义1: 有__________________的两条射线组成的图形叫做角。 这个公共端点是角的________,这两条射线是角的__________。 2. 角的表示:①用三个大写字母表示,表示顶点的字母写在中间:∠AOB; ②用一个大写字母表示:∠O; ③用一个希腊字母表示:∠a; ④用一个阿拉伯数学表示:∠1。 O A B C A B C (1) (2) 思考:用适当的方法表示下图中的每个角: 演示:把一条射线由OA的位置绕点O旋转到OB的位置,如图(1) 射线开始的位置OA与旋转后的位置OB组成了什么图形? 角。 3.角的定义2: 角也可以看作由一条射线绕着它的端点旋转面形成的图形。 O A(B) · (1) 终边 始边 O A B · · · O A B (2) (3) 如图(2),当射线旋转到起始位置OA与终止位置OB在一条直线上时,形成_____角; 第 26 页 共 26 页 如图(3),继续旋转,OB与OA重合时,又形成________角; 思考:平角是一条直线吗?周角是一条射线吗?为什么? 4、角的度量 阅读课本137页;填空: 1周角=_____0 , 1平角=_____0; 10=____′, 1′=_____′′; 如∠a的度数是48度56分37秒,记作∠a=48056′37′′。 度、分、秒是常用的角的度量单位,以度、分、秒为单位的角的度量制,叫做角度制, 注意:角的度、分、秒与时间的时、分、秒一样,都是60进制, 计算时,借1当成60,满60进1。 例 计算:(1)53028′+47035′; (2)17027′+3050′;(学生自己完成) 【课堂练习】: 课本138页1、2。 【要点归纳】: 1、什么是角、平角、周角? 2、怎么表示角? 3、角的度量单位是什么?它们是如何换算的? 【拓展训练】: 1、(37.145)0 = 度 分 秒;98030′18′′= 度。 2、下午2时30分,钟表中时针与分针的夹角为〔 〕 A、900 B、1050 C、1200 D、1350 3、如图,A、B、C在一直线上,已知1=53°,2=37°;CD与CE垂直吗? 【总结反思】: 第 26 页 共 26 页 课题 4.3.2角的比较与运算 【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系; 2、理解角平分线的概念,会画角平分线。 【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。 【导学指导】 一、知识链接 回顾线段大小的比较,,怎样比较图中线段AB、BC、CA的长短? A B C (1) 度量法;(2)叠合法。 AB<AC<BC 那么怎样比较∠A、 ∠ B、 ∠ C的大小呢? 二、自主学习 1、比较角的大小 (1)度量法:用量角器量出角的度数,然后比较它们的大小。 (2)叠合法:把两个角叠合在一起比较大小。 A O B B′ A O B B′ A O B (B′) (1) (2) (3) 教师演示: (1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB>∠AOB′。 2、认识角的和差 A O B C 思考:如图,图中共有几个角?它们之间有什么关系? 图中共有3个角:∠AOB、∠AOC、∠BOC。它们的关系是: ∠AOC=∠AOB+∠BOC; ∠BOC=∠AOC-∠AOB; ∠AOB=∠AOC-∠BOC 3、用三角板拼角 第 26 页 共 26 页 探究:借助三角尺画出150,750的角。 一副三角板的各个角分别是多少度?___________________________________ 学生尝试画角。 你还能画出哪些角?有什么规律吗? 还能画出___________________________________ 规律是:凡是 的倍数的角都能画出。 4、角平分线 A O B C A O B C D (2) (1) 在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系? 如图(1) 角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。 类似地,还有角的三等分线等。如图(2)中的OB、OC。 OB是∠AOC的一平分线,可以记作: ∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC= 。 5、例题学习 O A B C 例1 如图,O是直线AB上一点,∠AOC=53017′,求∠ BOC的度数。 例2 把一个周角7等分,每一份是多少度的角(精确到分) 【课堂练习】: 课本140-141页1、2、3。 【要点归纳】: 1、角的大小比较的方法和角的和差关系; 2、用一副三角板画角; 3、角的平分线及表示。 【拓展训练】: 1、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC,求∠DOE的度数。 O A B D C E 第 26 页 共 26 页 【总结反思】: 课题:余角和补角(1) 【学习目标】在具体的现实情境中,认识一个角的余角和补角; 【重点难点】正确求出一个角的余角和补角。 【导学指导】 一、知识链接 思考: (1) 在一副三角板中同一块三角板的两个锐角和等于多少度? (2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。 (3) 如 图 2,已知点A、O、B在一直线上 ,∠COD=90°,那么∠1+∠2= 。 D C 90° 2 2 1 1 O 图 1 图 2 二、自主探究 1.互为余角的定义: 思考: (1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2= (2) 如图4,A、O、B在同一直线上,∠1+∠2= 1 2 A O B 图 4 1 2 图 3 2.互为补角的定义: 问题1:以上定义中的“互为”是什么意思? 问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗? 第 26 页 共 26 页 3.新知应用: 例1:若一个角的补角等于它的余角4倍,求这个角的度数。 例2:如图,∠AOC=∠COB=90°,∠DOE=90°,A、O、B三点在一直线上 (1)写出∠COE的余角,∠AOE的补角; (2)找出图中一对相等的角,并说明理由; 【课堂练习】: 课本141页练习1、2、3; 【要点归纳】: 【拓展训练】: 1、一个角的余角比它的补角的还少,求这个角的度数。 2、若和互余,且:=7:2,求、的度数。 【总结反思】: 第 26 页 共 26 页 课题:余角和补角(2) 【学习目标】:1、掌握余角和补角的性质。 2、了解方位角,能确定具体物体的方位。 【重点难点】掌握余角和补角的性质;方位角的应用; 【导学指导】 一、知识链接 1.70°的余角是 ,补角是 ; 2.∠a(∠a <90°)的它的余角是 ,它的补角是 ; 二、自主学习 1.探究补角的性质: 例3、如图, ∠1与∠2互补,∠3与∠4互补, ∠1= ∠3,那么∠2与∠4相等吗?为什么? 1 2 3 4 分析:(1)∠1与∠2互补,∠2等于什么?∠2=1800 - , ∠3与∠4互补,∠4等于什么? ∠4=1800 - 。 (2)当∠1= ∠3时,∠2与∠4有什么关系?为什么? ∠2=∠4(等量减等量,差相等) 上面的结论,用文字怎么叙述? 补角的性质:等角的 相等。 2.探究余角的性质: 如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么? 余角性质:等角的 相等 3.方位角: 第 26 页 共 26 页 (1)认识方位: 正东、正南、正西、正北、东南、 西南、西北、东北。 (2)找方位角: 乙地对甲地的方位角 ; 甲地对乙地的方位角 例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线。 (师生共同完成) 【课堂练习】: 1、和都是的补角,则 ; 2、如果,则的关系是 , 理由是 ; 3、A看B的方向是北偏东21°,那么B看A的方向( ) A 南偏东69° B 南偏西69° C 南偏东21° D 南偏西21° 4、在点O 北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是( ) A 100° B 70° C 180° D 140° 【要点归纳】:补角的性质: 余角的性质: 【拓展训练】: 1. 如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在一条直线上,且∠2=∠4, 请说出∠1与∠3之间的关系?并试着说明理由? 第 26 页 共 26 页 【总结反思】: 课题 第四章 图形认识初步复习(两课时) 【复习目标】:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识; 2.掌握角的基本概念,能利用角的知识解决一些实际问题。 【复习重点】: 线段、射线、直线、角的性质和运用 【复习难点】:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。 【导学指导】 平面图形 从不同方向看立体图形 展开立体图形 平面图形 几何图形 立体图形 直线、射线、线段 角 两点之间,线段最短 线段大小的比较 角的度量 角的比较与运算 余角和补角 角的平分线 等角的补角相等 等角的余角相等 两点确定一条直线 一、知识结构 二、回顾与思考 1、下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗? 立体图形 平面图形 展开图 两点间的距离 余角 补角 2、与以前相比,你对直线、射线、线段和角有什么新的认识? 3、直线的性质: 经过两点有一条直线,并且只有一条直线。即: __________确定一条直线。 4、线段的性质和两点间的距离 (1)线段的性质:两点之间,_______________。 (2)两点间的距离:连接两点的_______________,叫做两点间的距离。 5、线段的中点及等分点的意义 (1)若点C把线段AB分为________的两条线段AC和BC,则点C叫做线段的中点。 角的概念 1、角的定义和表示 (1)有_______________的两条射线组成图形叫做角。这是从静止的角度来定义的。 由一条射线绕着_______________旋转而成的图形叫做角。这是从运动的角度来定义的。 (2)角的表示: ①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示。 2、角的度量 第 26 页 共 26 页 10=60′;1′=60′′. 3、角的比较 比较角的方法:度量法和叠合法。 4、角的平分线 从一个角的顶点出发,把这个角分成________的两个角的射线,叫做这个角的平分线。 表示为 ∠AOC= ∠COB O A B C 或∠ AOC=∠COB= 1/2∠AOB 或2∠ AOC=2∠COB= ∠AOB 5、余角和补角 (1)定义:如果两个角的和等于______,就说这两个角互为余角。 如果两个角的和等于______,就说这两个角互为补角。 注意:余角和补角是两个角之间的关系;只与数量有有关,而与位置无关。 (2)余角和补角的性质: 同角(等角)的余角相等。 同角(等角)的补角相等。 6、方位角 三、例题导引 1 如右图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,画出从不同方向看到的平面图形。 1 1 2 2 2.(1)如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点,求线段MN的长; (2)若C为线段AB上任一点,满足AC + CB = a cm,其它条件不变,你能猜想MN的长度吗?并说明理由。 (3)若C在线段AB的延长线上,且满足ACBC = b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由。 3 如图,∠AOB是直角, ∠ AOC=50°,ON是∠ AOC的平分线,OM是∠ BOC的平分线。 (1)求∠ MON的大小; (2)当∠ AOC= 时, ∠ MON等于多少度? O B M A N C (3)当锐角∠ AOC的大小发生改变时, ∠ MON的大小也会发生改变吗?为什么? 【课堂练习】 第 26 页 共 26 页 一、选择题: 1、下列说法正确的是( ) A.射线AB与射线BA表示同一条射线。 B.连结两点的线段叫做两点之间的距离。 C.平角是一条直线。 D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3; 2、5点整时,时钟上时针与分钟 之间的夹角是〔 〕 A.210° B.30° C.150° D.60° A B O 300 700 3、如图,射线OA表示〔 〕 A、南偏东700 B、北偏东300 C、南偏东300 D、北偏东700 4、下列图形不是正方体展开图的是〔 〕 5、若∠A = 20°18′,∠B = 20°15′30″,∠C = 20.25°,则〔 〕 A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠ 二、填空题: 6、 38°41′的余角等于_____,123°59′的补角等于_____; 7、根据下列多面体的平面展开图,填写多面体的名称。 (1)__________,(2)__________,(3)_________。 (1) (2) (3) 8、互为余角的两个角之差为35°,则较大角的补角是_____; 9、 45°52′48″=_________度, 126.31°=____°____′____″; 25°18′÷3=__________; 10、如图,已知CB=4,DB=7,D是AC的中点, 则求AC的长度。 11、如图①直线l表示一条笔直的公路,在公路两旁有两上村庄A和B 第 26 页 共 26 页 ,要在公路边修建一个车站C,使车站C到村庄A和B的距离之和最小,请找出村庄C点的位置,并说明理由。 【拓展训练】 1.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC. (1)指出图中∠AOD的补角,∠BOE的补角; (2)若∠BOC=68°,求∠COD和∠EOC的度数; (3)∠COD与∠EOC具有怎样的数量关系? 2、观察下列图形,并阅读图形下面的相关文字: 两条直线相交,最多有1个交点 三条直线相交,最多有3个交点 四条直线相交,最多有6个交点 … 猜想:(1)5条直线最多有几个交点?6条直线呢? (2)n条直线相交最多有几个 交点 【总结反思】: 第四章 图形认识初步 检测试卷(满分100分) 班级 姓名 成绩 一、填空题(每空4分,共40分) 1.圆柱的侧面展开图是 ; 2.已知与互余,且,则为 ; 3.如果一个角的补角是,那么这个角的余角是________; 4.乘火车从站出发,沿途经过个车站可到达站,那么在两站之间最多共有________种不同的票价; 5.如图,若是中点,是中点,若,,_________。 第 26 页 共 26 页 6.要在墙上固定一根木条,至少要 个钉子,根据的原理是 。 7.________度________分; 8. ________; 9.小明每天下午5:30回家,这时分针与时针所成的角的度数为____度。 二、选择题(每题4分,共20分) 10.下列判断正确的是( ) A.平角是一条直线 B.凡是直角都相等 C.两个锐角的和一定是锐角 D.角的大小与两条边的长短有关 11.下列哪个角不能由一副三角板作出( ) A. B. C. D. 12.若,则∠α与∠β的关系是( ) A.互补 B.互余 C.和为钝角 D.和为周角 13.平面上A、B两点间的距离是指( ) A. 经过A、B两点的直线 B. 射线AB C. A、B两点间的线段 D. A、B两点间线段的长度 14.一个立体图形的三视图如图所示,那么它是 ( ) A.圆锥 B.圆柱 C.三棱锥 D.四棱锥 三、解答题:(共40分) 15.根据下列要求画图:(10分) A · B · O · (1)连接线段AB; (2)画射线OA,射线OB; (3)在线段AB上取一点C,在射线OA上 取一点D(点C、D不与点A重合),画直 线CD,使直线CD与射线OB交于点E。 16、如图所示的几何体是由5个相同的正方体搭成的, 请画出它的主视图、左视图和俯视图(9分) 第 26 页 共 26 页 17.如图所示,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?(9分) 18.(1)如下图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的的长度. (2)在(1)中,如果AC=acm,,其它条件不变,你能猜出MN的长度吗?请你用 一句简洁的话表述你发现的规律. (3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求MN的长度。”结果会有变化吗?如果有,求出结果。(12分) 第 26 页 共 26 页查看更多