- 2021-07-01 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习北师大版归纳与类比学案
13.1 归纳与类比 最新考纲 考情考向分析 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用. 2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异. 以理解类比推理、归纳推理和演绎推理的推理方法为主,常以演绎推理的方法根据几个人的不同说法作出推理判断进行命题.注重培养学生的推理能力;在高考中以填空题的形式进行考查,属于中、高档题. 1.归纳推理 根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体,由个别到一般的推理. 归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性, 结论:任意d∈M,d也具有某属性. 2.类比推理 由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理. 类比推理的基本模式:A:具有属性a,b,c,d; B:具有属性a′,b′,c′; 结论:B具有属性d′. (a,b,c,d与a′,b′,c′,d′相似或相同) 3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确. 4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × ) (4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ ) (5)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N+).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × ) 题组二 教材改编 2.已知在数列{an}中,a1=1,当n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是( ) A.an=3n-1 B.an=4n-3 C.an=n2 D.an=3n-1 答案 C 解析 a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想an=n2. 3.在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n (n<19,n∈N+)成立,类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________________. 答案 b1b2…bn=b1b2…b17-n(n<17,n∈N+) 解析 利用类比推理,借助等比数列的性质, b=b1+n·b17-n,可知存在的等式为b1b2…bn=b1b2…b17-n(n<17,n∈N+). 题组三 易错自纠 4.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理( ) A.结论正确 B.大前提不正确 C.小前提不正确 D.全不正确 答案 C 解析 f(x)=sin(x2+1)不是正弦函数,所以小前提错误. 5.(2017·济南调研)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论: ①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________.(填序号) 答案 ①④ 解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 6.(2018·中山模拟)在△ABC中,不等式++≥成立;在凸四边形ABCD中,不等式+++≥成立;在凸五边形ABCDE中,不等式++++≥成立…依此类推,在凸n边形A1A2…An中,不等式++…+≥____________________成立. 答案 (n∈N+,n≥3) 解析 ∵++≥=, +++≥=, ++++≥=,…, ∴++…+≥(n∈N+,n≥3). 题型一 归纳推理 命题点1 与数字有关的等式的推理 典例(2016·山东)观察下列等式: -2+-2=×1×2; -2+-2+-2+-2=×2×3; -2+-2+-2+…+-2=×3×4; -2+-2+-2+…+-2=×4×5; …, 据此规律,-2+-2+-2+…+-2=__________. 答案 ×n×(n+1) 解析 观察等式右边的规律:第1个数都是,第2个数对应行数n,第3个数为n+1. 命题点2 与不等式有关的推理 典例 (2017·济宁模拟)已知ai>0(i=1,2,3,…,n),观察下列不等式: ≥; ≥; ≥; …; 照此规律,当n∈N+,n≥2时,≥______. 答案 解析 根据题意得≥(n∈N+,n≥2). 命题点3 与数列有关的推理 典例 (2017·湖北七市教 研协作体联考)观察下列等式: 1+2+3+…+n=n(n+1); 1+3+6+…+n(n+1)=n(n+1)(n+2); 1+4+10+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3); …; 可以推测,1+5+15+…+n(n+1)(n+2)(n+3)=____________________. 答案 n(n+1)(n+2)(n+3)(n+4)(n∈N+) 解析 根据式子中的规律可知,等式右侧为 n(n+1)(n+2)(n+3)(n+4) =n(n+1)(n+2)(n+3)(n+4) (n∈N+). 命题点4 与图形变化有关的推理 典例(2017·大连调研)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( ) A.21 B.34 C.52 D.55 答案 D 解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D. 思维升华归纳推理问题的常见类型及解题策略 (1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可. (4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性. 跟踪训练 (1)将自然数0,1,2,…按照如下形式进行摆列: 根据以上规律判定,从2 016到2 018的箭头方向是( ) 答案 A 解析 从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5箭头也是垂直指下,8→9也是如此,而2 016=4×504,所以2 016 →2 017也是箭头垂直指下,之后2 017→2 018的箭头是水平向右,故选A. (2)如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( ) A.6 B.7 C.8 D.9 答案 C 解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n(n≥2,n∈N*)层的点数为6(n-1).设一个点阵有n(n≥2,n∈N+)层,则共有的点数为1+6+6×2+…+6(n-1)=1+6·=3n2-3n+1,由题意,得3n2-3n+1=169,即(n+7)·(n-8)=0,所以n=8,故共有8层. 题型二 类比推理 典例 (1)等差数列{an}的公差为d,前n项的和为Sn,则数列为等差数列,公差为.类似地,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则等比数列{}的公比为( ) A. B.q2 C. D. 答案 C 解析 由题设,得Tn=b1·b2·b3·…·bn=b1·b1q·b1q2·…·b1qn-1=bq1+2+…+(n-1)=b. ∴=b1,∴等比数列{}的公比为,故选C. (2)在平面上,设ha,hb,hc是△ABC三条边上的高,P为三角形内任一点,P到相应三边的距离分别为Pa,Pb,Pc,我们可以得到结论:++=1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案 +++=1 解析 设ha,hb,hc,hd分别是三棱锥A-BCD四个面上的高,P为三棱锥A-BCD内任一点,P到相应四个面的距离分别为Pa,Pb,Pc,Pd,于是可以得出结论:+++=1. 思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键. (2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等. 跟踪训练 (2018·晋江模拟)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如下图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)如图1,17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如下图2.在杨辉三角中相邻两行满足关系式:C+C=C,其中n是行数,r∈N.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是____________. 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 … C C … C … C C 图1 … … … 图2 答案 =+ 解析 类比观察得,将莱布尼茨三角形的每一行都能提出倍数 ,而相邻两项之和是上一行的两者相拱之数,所以类比式子C+C=C, 有=+. 题型三 演绎推理 典例 (2018·保定模拟)数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn (n∈N+).证明: (1)数列是等比数列; (2)Sn+1=4an. 证明 (1)∵an+1=Sn+1-Sn,an+1=Sn, ∴(n+2)Sn=n(Sn+1-Sn),即nSn+1=2(n+1)Sn. ∴=2·,又=1≠0,(小前提) 故是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知=4·(n≥2), ∴Sn+1=4(n+1)·=4··Sn-1 =4an(n≥2),(小前提) 又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提) ∴对于任意正整数n,都有Sn+1=4an.(结论) (第(2)问的大前提是第(1)问的结论以及题中的已知条件) 思维升华演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,当大前提不明确时,可找一个使结论成立的充分条件作为大前提. 跟踪训练 (1)(2017·全国Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 答案 D 解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩. 故选D. (2)已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数. 证明 设x1,x2∈R,取x1查看更多