- 2021-07-01 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学必修1教案3_1_2用二分法求方程的近似解
§3.1.2 用二分法求方程的近似解教案 【教学目标】 1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解; 2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 【教学重难点】 教学重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 教学难点:精确度概念的理解,求方程近似解一般步骤的概括和理解 【教学过程】 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 (二)情景导入、展示目标。 探究任务:二分法的思想及步骤 问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好,解法: 第一次,两端各放 个球,低的那一端一定有重球; 第二次,两端各放 个球,低的那一端一定有重球; 第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球. 思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点? 新知:对于在区间上连续不断且<0的函数,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection). 反思: 给定精度ε,用二分法求函数的零点近似值的步骤如何呢? ①确定区间,验证,给定精度ε; ②求区间的中点; ③计算: 若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点); ④判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤②~④. (三)典型例题 例1 借助计算器或计算机,利用二分法求方程的近似解. 解析:如何进一步有效的缩小根所在的区间。 解:原方程即为,令,用计算器或计算机作出对应的表格与图象(见课本90页) 则,说明在区间内有零点, 取区间的中点,用计数器计算得,因为,所以. 再取区间的中点,用计数器计算得,因为,所以. 同理可得 由于 , 所以方程的近似解可取为 点评:利用同样的方法可以求方程的近似解。 变式训练1:求方程的根大致所在区间. 例2 求方程的解的个数及其大致所在区间. 分析:用二分法求方程的近似解的原理的应用,学生小组合作共同完成。 变式训练2 求函数的一个正数零点(精确到) 零点所在区间 中点函数值符号 区间长度 (四)小结:今天的学习内容和方法有哪些?你有哪些收获和经验?课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。 【板书设计】 一、二分法的思想及步骤 二、例题 例1 变式1 例2 变式2 【作业布置】课本91页1 §3.1.2 用二分法求方程的近似解学案 课前预习学案 一、预习目标 能说出零点的概念,零点的等价性,零点存在性定理。 二、预习内容 (预习教材P89~ P91,找出疑惑之处) 复习1:什么叫零点?零点的等价性?零点存在性定理? 对于函数,我们把使 的实数x叫做函数的零点. 方程有实数根函数的图象与x轴 函数 . 如果函数在区间上的图象是连续不断的一条曲线,并且有 ,那么,函数在区间内有零点. 复习2:一元二次方程求根公式? 三次方程? 四次方程? 三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 一、学习目标 1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解; 2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 学习重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识. 学习难点:精确度概念的理解,求方程近似解一般步骤的概括和理解 二、学习过程 探究任务:二分法的思想及步骤 问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. 解法: 第一次,两端各放 个球,低的那一端一定有重球; 第二次,两端各放 个球,低的那一端一定有重球; 第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球. 思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点? 新知:对于在区间上连续不断且<0的函数,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection). 反思: 给定精度ε,用二分法求函数的零点近似值的步骤如何呢? ①确定区间,验证,给定精度ε; ②求区间的中点; ③计算: 若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点); ④判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤②~④. 三、 典型例题 例1 借助计算器或计算机,利用二分法求方程的近似解. 变式:求方程的根大致所在区间. 例2求方程的解的个数及其大致所在区间. 变式训练 求函数的一个正数零点(精确到) 零点所在区间 中点函数值符号 区间长度 四、反思总结 ① 二分法的概念;②二分法步骤;③二分法思想. 五、当堂达标 1. 求方程的实数解个数及其大致所在区间. 课后练习与提高 1. 若函数在区间上为减函数,则在上( ). A. 至少有一个零点 B. 只有一个零点 C. 没有零点 D. 至多有一个零点 2. 下列函数图象与轴均有交点,其中不能用二分法求函数零点近似值的是( ). 3. 函数的零点所在区间为( ). A. B. C. D. 4. 用二分法求方程在区间[2,3]内的实根,由计算器可算得,,,那么下一个有根区间为 . 5. 函数的零点个数为 ,大致所在区间为 . 6. 借助于计算机或计算器,用二分法求函数的零点(精确到). 、查看更多