高考数学【文科】真题分类详细解析版专题13 统计(解析版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学【文科】真题分类详细解析版专题13 统计(解析版)

专题13 统计 ‎ 【2013高考真题】‎ ‎(2013·新课标Ⅰ文)(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )‎ ‎(A) (B) (C) (D) ‎(2013·新课标Ⅱ卷)13. 从1,2,3,4,5中任意取出两个不同的数,其和为5的概率为________.‎ ‎(2013·上海文)11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).‎ ‎(2013·陕西文)5. 对一批产品的长度(单位: mm)进行抽样检测, 下图为检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为 ‎(A) 0.09 (B) 0.20 (C) 0.25 (D) 0.45‎ ‎(2013·山东文)10. 将某选手的个得分去掉个最高分,去掉个最低分,个剩余分数的平均分为,现场做的个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以表示:‎ ‎ ‎ 则个剩余分数的方差为 A. B. C. D. ‎ ‎(2013·辽宁文)(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,‎ 数据的分组一次为 若低于60分的人数是15人,则该班的学生人数是 ‎(A) (B) ‎ ‎(C) (D)‎ ‎(2013·江西文)4.若集合,,从A,B中各任意取一个数,则这两数之和等于4的概率是 A. B. C. D. ‎ ‎(2013·江西文)5.总体由编号01,,02,…,19,20的20个个体组成。利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为 ‎7816‎ ‎6572‎ ‎0802‎ ‎6314‎ ‎0702‎ ‎4369‎ ‎9728‎ ‎0198‎ ‎3204‎ ‎9234‎ ‎4935‎ ‎8200‎ ‎3623‎ ‎4869‎ ‎6938‎ ‎7481‎ A.08 B.07 C.02 D.01‎ ‎(2013·湖南文)9.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=( )‎ A. B. C. D.‎ ‎(2013·湖南文)3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )‎ A.9 B‎.10 C.12 D.13‎ ‎(2013·福建文)14.利用计算机产生发生的概率为________ ‎ ‎(2013·安徽文)(5)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,‎ 则甲或乙被录用的概率为 ‎ (A) (B) ‎ ‎ (C) (D)‎ ‎(2013·浙江文)‎ ‎12、从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________. ‎ ‎(2013·安徽文)((17)(本小题满分12分)‎ 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:‎ ‎ 甲 乙 ‎ 7 4 5 ‎ ‎ 5 3 3 2 5 3 3 8 ‎ ‎ 5 5 4 3 3 3 1 0 0 6 0 6 9 1 1 2 2 3 3 5‎ ‎ 8 6 6 2 2 1 1 0 0 7 0 0 2 2 2 3 3 6 6 9‎ ‎ 7 5 4 4 2 8 1 1 5 5 8 ‎ ‎ 2 0 9 0‎ ‎(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);‎ ‎(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为,估计的值.‎ 将60分及60分以上为及格的人数除以总人数;(2)求出甲乙的平均数即可,作差,但需要注意计算时的一些技巧,. (2013·辽宁文)(16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .‎ ‎(2013·北京文) (16)(本小题共13分)‎ 下图是某市‎3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择‎3月1日至3月15日中的某一天到达该市,并停留2天.‎ ‎(Ⅰ)求此人到达当日空气质量优良的概率;‎ ‎(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;‎ ‎(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)‎ ‎(2013·大纲文)20.(本小题满分12分)‎ 甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为各局比赛的结果都相互独立,第局甲当裁判.‎ ‎(I)求第局甲当裁判的概率;‎ ‎(II)求前局中乙恰好当次裁判概率.‎ ‎(2013·福建文)19.(本小题满分12分)‎ 某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名。为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:分别加以统计,得到如图所示的频率分布直方图。‎ ‎(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;‎ ‎(II)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?‎ ‎0.100‎ ‎0.050‎ ‎0.010‎ ‎0.001‎ k ‎2.706‎ ‎3.841‎ ‎6.635‎ ‎10.828‎ ‎(2013·广东文)17.(本小题满分13分)‎ 从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:‎ 分组(重量)‎ 频数(个)‎ ‎5‎ ‎10‎ ‎20‎ ‎15‎ ‎(1) 根据频数分布表计算苹果的重量在的频率;‎ ‎(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?‎ ‎(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.‎ ‎(2013·湖南文)18.(本小题满分12分)‎ 某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的“相近”作物株数之间的关系如下表所示:‎ 这里,两株作物“相近”是指它们之间的直线距离不超过1米。‎ ‎(Ⅰ)完成下表,并求所种作物的平均年收获量;‎ ‎(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为‎48kg的概率.‎ ‎(2013·辽宁文)19.(本小题满分12分)‎ 现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:‎ ‎(I)所取的2道题都是甲类题的概率;‎ ‎(II)所取的2道题不是同一类题的概率.‎ ‎(2013·山东文)17.某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/‎ 米2)‎ 如下表所示:‎ A B C D E 身高 ‎1.69‎ ‎1.73‎ ‎1.75‎ ‎1.79‎ ‎1.82‎ 体重指标 ‎19.2‎ ‎25.1‎ ‎18.5‎ ‎23.3‎ ‎20.9‎ ‎(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率 ‎(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率。‎ ‎(2013·陕西文)19. (本小题满分12分) ‎ 有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:‎ 组别 A B C D E 人数 ‎50‎ ‎100‎ ‎150‎ ‎150‎ ‎50‎ ‎ (Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表. ‎ 组别 A B C D E 人数 ‎50‎ ‎100‎ ‎150‎ ‎150‎ ‎50‎ 抽取人数 ‎6‎ ‎ (Ⅱ) 在(Ⅰ)中, 若A, B两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. ‎ ‎(2013·天津卷)(15) (本小题满分13分)‎ 某产品的三个质量指标分别为x, y, z, 用综合指标S = x + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下: ‎ 产品编号 A1‎ A2‎ A3‎ A4‎ A5‎ 质量指标(x, y, z)‎ ‎(1,1,2)‎ ‎(2,1,1)‎ ‎(2,2,2)‎ ‎(1,1,1)‎ ‎(1,2,1)‎ 产品编号 A6‎ A7‎ A8‎ A9‎ A10‎ 质量指标(x, y, z)‎ ‎(1,2,2)‎ ‎(2,1,1)‎ ‎(2,2,1)‎ ‎(1,1,1)‎ ‎(2,1,2)‎ ‎(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; ‎ ‎(Ⅱ) 在该样品的一等品中, 随机抽取两件产品, ‎ ‎(1) 用产品编号列出所有可能的结果; ‎ ‎(2) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率. ‎ ‎(2013·新课标Ⅱ卷)(19)(本小题满分12分)‎ 经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以(单位:t,100≤≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.‎ ‎(Ⅰ)将T表示为的函数;‎ ‎(Ⅱ)根据直方图估计利润T不少于57000元的概率.‎ ‎(2013·新课标Ⅰ文)18(本小题满分共12分)‎ 为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:‎ 服用A药的20位患者日平均增加的睡眠时间:‎ ‎0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5‎ ‎2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4‎ 服用B药的20位患者日平均增加的睡眠时间:‎ ‎3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4‎ ‎1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5‎ (1) 分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?‎ (2) 完成茎叶图,从茎叶图来看,哪种药疗效更好?‎ ‎【2012高考真题】‎ ‎1.【2012高考新课标文3】在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为 ‎ ‎(A)-1 (B)0 (C) (D)1‎ ‎2.【2012高考山东文4】 (4)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是 ‎ (A)众数   (B)平均数   (C)中位数   (D)标准差 ‎3.【2012高考四川文3】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为( )‎ A、101 B、‎808 C、1212 D、2012‎ ‎4.【2012高考陕西文3】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ( )‎ A.46,45,56 B.46,45,53‎ C.47,45,56 D.45,47,53‎ ‎【答案】A.‎ ‎【解析】根据茎叶图可知样本中共有30个数据,中位数为46,出现次数最多的是45,最大数与最小数的差为68-12=56.故选A.‎ ‎5.【2012高考江西文6】小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为 ‎6.【2012高考湖南文5】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,)‎ C.若该大学某女生身高增加‎1cm,则其体重约增加‎0.85kg D.若该大学某女生身高为‎170cm,则可断定其体重必为‎58.79kg ‎7.【2012高考湖北文2】容量为20的样本数据,分组后的频数如下表 则样本数据落在区间[10,40]的频率为 A 0.35 B ‎0.45 C 0.55 D 0.65 ‎ ‎8.【2012高考广东文13由正整数组成的一组数据,其平均数和中位数都是,且标准差等于,则这组数据为 .(从小到大排列)‎ ‎9.【2012高考山东文14】右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为,,,,,.已知样本中平均气温低于‎22.5℃‎的城市个数为11,则样本中平均气温不低于‎25.5℃‎的城市个数为____.‎ ‎10.【2012高考浙江文11】某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.‎ ‎11.【2012高考湖南文13】图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.‎ ‎(注:方差,其中为x1,x2,…,xn的平均数)[来 ‎【答案】6.8‎ ‎【解析】,‎ ‎.‎ ‎12.【2012高考湖北文11】一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有______人。‎ ‎13.【2102高考福建文14】一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______.‎ ‎15.【2012高考安徽文18】(本小题满分13分)‎ 若某产品的直径长与标准值的差的绝对值不超过‎1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:‎ 分组 频数 频率 ‎[-3, -2)‎ ‎ ‎ ‎0.10‎ ‎[-2, -1)‎ ‎8‎ ‎ ‎ ‎(1,2]‎ ‎ ‎ ‎0.50‎ ‎(2,3]‎ ‎10‎ ‎ ‎ ‎(3,4]‎ ‎ ‎ ‎ ‎ 合计 ‎50‎ ‎1.00‎ ‎(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;‎ ‎(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;‎ ‎(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。‎ ‎16.【2012高考广东文17】(本小题满分13分)‎ 某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:,,,,.‎ ‎ (1)求图中的值;‎ ‎ (2)根据频率分布直方图,估计这100名学生语文成绩的平均分;‎ ‎(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在之外的人数.‎ 分数段 ‎【2011年高考真题】‎ ‎1. (2011年高考江西卷文科7)为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )‎ A. ‎ B. ‎ C. ‎ D.‎ ‎【答案】D ‎ ‎【解析】计算可以得知,中位数为5.5,众数为5所以选D ‎2. (2011年高考江西卷文科8)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:‎ 父亲身高x(cm)‎ ‎174‎ ‎176‎ ‎176‎ ‎176‎ ‎178‎ 儿子身高y(cm)‎ ‎175‎ ‎175‎ ‎176‎ ‎177‎ ‎177‎ 则y对x的线性回归方程为 A.y = x-1 B.y = x+‎1 C.y = 88+ D.y = 176‎ ‎3. (2011年高考福建卷文科4)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A. 6 B. ‎8 ‎‎ C. 10 D.12‎ ‎4. (2011年高考四川卷文科2)有一个容量为66的样本,数据的分组及各组的频数如下:‎ ‎ 2 4 9 18‎ ‎ 11 12 7 3‎ 根据样本的频率分布估计,大于或等于31.5的数据约占 ‎(A) (B) (C) (D) ‎ ‎5. (2011年高考陕西卷文科9)设··· ,是变量和的次方个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )‎ ‎ (A) 直线过点 ‎(B)和的相关系数为直线的斜率 ‎(C)和的相关系数在0到1之间 ‎(D)当为偶数时,分布在两侧的样本点的个数一定相同 ‎6.(2011年高考湖南卷文科5)通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:‎ 男 女 总计 爱好 ‎40‎ ‎20‎ ‎60‎ 不爱好 ‎20‎ ‎30‎ ‎50‎ 总计 ‎60‎ ‎50‎ ‎110‎ 由 附表:‎ ‎0.050‎ ‎0.010‎ ‎0.001‎ ‎3.841‎ ‎6.635‎ ‎10.828‎ 参照附表,得到的正确结论是( )‎ 有99%以上的把握认为“爱好该项运动与性别有关”‎ 有99%以上的把握认为“爱好该项运动与性别无关”‎ 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”‎ 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”‎ ‎7. (2011年高考山东卷文科13)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 .‎ ‎8 (2011年高考湖北卷文科11)‎ 某市有大型超市200家、中型超市400家,小型超市1400家,为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市 家.‎ 答案:20 ‎ 解析:应抽取中型超市(家).‎ ‎9.(2011年高考江苏卷6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差 ‎10.(2011年高考湖南卷文科18)(本题满分12分)‎ 某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.‎ ‎(I)完成如下的频率分布表:‎ ‎ 近20年六月份降雨量频率分布表 降雨量 ‎70‎ ‎110‎ ‎140‎ ‎160‎ ‎200‎ ‎220‎ 频率 ‎(II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.‎ ‎11.(2011年高考辽宁卷文科19) (本小题满分12分)‎ ‎ 某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种 乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机 选n小块地种植品种甲,另外n小块地种植品种乙 ‎ (Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:‎ ‎ (Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm2)如下表:‎ 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为 应该种植哪一品种?‎ 附:样本数据x1,x2,…,xa的样本方差,其中为样本平均数。‎ ‎12.(2011年高考安徽卷文科20)(本小题满分10分)‎ 某地最近十年粮食需求量逐年上升,下表是部分统计数据:‎ 年份 ‎2002‎ ‎2004‎ ‎2006‎ ‎2008‎ ‎2010‎ 需求量(万吨)‎ ‎236‎ ‎246‎ ‎257‎ ‎276‎ ‎286‎ ‎(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程;‎ ‎(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。‎ 温馨提示:答题前请仔细阅读卷首所给的计算公式及说明.‎ ‎【2010年高考真题】‎ ‎(2010陕西文数)4.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为,样本标准差分别为sA和sB,则 ‎ ‎ (A) >,sA>sB ‎(B) <,sA>sB ‎(C) >,sA<sB ‎(D) <,sA<sB ‎(2010重庆文数)(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 ‎(A)7 (B)15 (C)25 (D)35‎ ‎(2010四川文数)(4)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是 ‎(A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 (D)8,16,10,6‎ 解析:因为 ‎ 故各层中依次抽取的人数分别是,,,‎ 答案:D ‎(2010安徽文数)(14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .‎ ‎【答案】‎ ‎【解析】该地拥有3套或3套以上住房的家庭可以估计有:户,所以所占比例的合理估计是.‎ ‎(2010重庆文数)(14)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为____________ .‎ 解析:加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得 加工出来的零件的次品率 ‎(2010福建文数)14. 将容量为n的样本中的数据分成6组,绘制频率分布直方图。若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于 。‎ ‎【答案】60‎ ‎【解析】设第一组至第六组数据的频率分别为,则,解得,所以前三组数据的频率分别是,‎ 故前三组数据的频数之和等于=27,解得n=60。K^S*5U.C#O ‎【2009年高考真题】‎ ‎1.( 2009·广东文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人. ‎ ‎2.(2009·浙江文)某个容量为的样本的频率分布直方图如下,则在区间上的数据的频数为 .‎ ‎ 3.( 2009·广东文)(本小题满分13分)‎ 随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.‎ ‎ (1)根据茎叶图判断哪个班的平均身高较高;‎ ‎(2)计算甲班的样本方差 ‎(3)现从乙班这10名同学中随机抽取两名身高不低于‎173cm的同学,求身高为‎176cm的同学被抽中的概率.‎ ‎(3)设身高为‎176cm的同学被抽中的事件为A;‎ ‎4.( 2009·山东文)(本小题满分12分)‎ 一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):‎ 轿车A 轿车B 轿车C 舒适型 ‎100‎ ‎150‎ z 标准型 ‎300‎ ‎450‎ ‎600‎ 按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.‎ 求z的值. ‎ 用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;‎ 用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.‎ ‎5.(2009·安徽文)(本小题满分12分)‎ ‎ 某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照 试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:. ‎ 品种A:357,359,367,368,375,388,392,399,400,405,414,‎ ‎ 415,421,423,423,427,430,430,434,443,445,451,454‎ 品种B:363,371,374,383,385,386,391,392,394,395,397‎ ‎ 397,400,401,401,403,406,407,410,412,415,416,422,430‎ ‎(Ⅰ)完成所附的茎叶图 ‎(Ⅱ)用茎叶图处理现有的数据,有什么优点?. ‎ ‎(Ⅲ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。‎ ‎ ‎ 解析:(1)茎叶图如图所示 A B ‎9 7‎ ‎35‎ ‎8 7‎ ‎36‎ ‎3‎ ‎(2009·天津文)(本小题满分12分)‎ 为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂 ‎(Ⅰ)求从A,B,C区中分别抽取的工厂个数;‎ ‎(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。‎ 的概率为 ‎(2009·宁夏海南文)(本小题满分12分)‎ 某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).‎ ‎(Ⅰ)A类工人中和B类工人各抽查多少工人?. ‎ ‎(Ⅱ)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2‎ 表1:‎ 生产能力分组 人数 ‎4‎ ‎8‎ ‎5‎ ‎3‎ 表2:‎ 生产能力分组 人数 ‎ 6‎ ‎ y ‎ 36‎ ‎ 18‎ 先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)‎ ‎(ii)分别估计类工人和类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)。‎ ‎(2009·福建文)(本小题满分12分)‎ 袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球 ‎(I)试问:一共有多少种不同的结果?请列出所有可能的结果; ‎ ‎(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。‎ ‎ ‎ ‎【2008年高考真题】‎
查看更多

相关文章

您可能关注的文档