【数学】2019届一轮复习人教A版二项分布与正态分布学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2019届一轮复习人教A版二项分布与正态分布学案

二项分布与正态分布 ‎【考点梳理】‎ ‎1.条件概率 条件概率的定义 条件概率的性质 设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率 ‎(1)0≤P(B|A)≤1;‎ ‎(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)‎ ‎2.事件的相互独立性 ‎(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.‎ ‎(2)性质:若事件A与B相互独立,则A与,与B,与也都相互独立,P(B|A)=P(B),P(A|B)=P(A).‎ ‎3.独立重复试验与二项分布 ‎(1)独立重复试验 在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,…,n)是第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)P(A3)…P(An).‎ ‎(2)二项分布 在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X= )=Cp (1-p)n- ( =0,1,2,…,n),此时称随机变量X服从二项分布,记作X B(n,p),并称p为成功概率.‎ ‎4.正态分布 ‎(1)正态分布的定义 如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=φμ,σ(x)dx,则称随机变量X服从正态分布,记为X N(μ,σ2).其中φμ,σ(x)=(σ>0).‎ ‎(2)正态曲线的性质 ‎①曲线位于x轴上方,与x轴不相交,与x轴之间的面积为1;‎ ‎②曲线是单峰的,它关于直线x=μ对称;‎ ‎③曲线在x=μ处达到峰值;‎ ‎④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.‎ ‎(3)正态总体在三个特殊区间内取值的概率值 ‎①P(μ-σ4)=1-P(ξ<4)=1-0.8=0.2,P(0<ξ<2)=P(0<ξ<4)=[1-P(ξ<0)-P(ξ>4)]=(1-0.2-0.2)=0.3.‎ ‎(2)由题意,知P(ξ>110)==0.2,所以该班学生数学成绩在110分以上的人数约为0.2×50=10.‎ ‎【类题通法】‎ 对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:(1)对任意的a,有P(X<μ-a)=P(X>μ+a);(2)P(X120)=×(1-0.70)=0.15,∴应抽取的份数为100×0.15=15.‎
查看更多

相关文章

您可能关注的文档